Included studies and clinical practice guidelines hepatic toxicity surveillance

Studies liver injury and iron overload

Year	Bibliography
Liver injur	у
2019	Mulder et al. Hepatic late adverse effects after antineoplastic treatment for
	childhood cancer. Cochrane Database Syst Rev 2019;4:CD008205.
2019	Green et al. Serum ALT elevations in survivors of childhood cancer. A report from
	the St. Jude Lifetime Cohort Study. Hepatology 2019;69:94-106.
2013	Mulder et al. Surveillance of hepatic late adverse effects in a large cohort of long-
	term survivors of childhood cancer: prevalence and risk factors. Eur J Cancer
	2013;49:185-93.
Iron overl	oad
2017	Sirvent et al. Prevalence and risk factors of iron overload after hematopoietic stem
	cell transplantation for childhood acute leukemia: a LEA study. Bone Marrow
	Transplant 2017;52:80-87.
2014	Ruccione et al. Characterization of transfusion-derived iron deposition in childhood
	cancer survivors. Cancer Epidemiol Biomarkers Prev 2014;23:1913-1919.
2009	Chotsampancharoen et al. Iron overload in survivors of childhood leukemia after
	allogeneic hematopoietic stem cell transplantation. Pediatr Transplant
	2009;13:348-352.

Studies focal nodular hyperplasia and nodular regenerative hyperplasia

Year	Bibliography			
Focal nod	Focal nodular hyperplasia			
2020	Cattoni et al. Hepatic focal nodular hyperplasia after pediatric hematopoietic stem			
	cell transplantation: The impact of hormonal replacement therapy and iron			
	overload. Pediatr Blood Cancer 2020;67:e28137.			
2015	Pillon et al. Focal nodular hyperplasia of the liver: an emerging complication of			
	hematopoietic SCT in children. Bone Marrow Transplantation 2015;50:414-419.			
2013	Masetti et al. Benign hepatic nodular lesions after treatment for childhood cancer.			
	JPGN 2013;56:151-155.			
2013	Masetti et al. Focal nodular hyperplasia of the liver in children after hematopoietic			
	stem cell transplantation. Pediatr Transplantation 2013;17:479-486.			
2012	Smith et al. Incidence and etiology of new liver lesions in pediatric patients			
	previously treated for malignancy. AJR 2012;199:186-191.			
2009	Sudour et al. Focal nodular hyperplasia of the liver following hematopoietic SCT.			
	Bone Marrow Transplantation 2009;43:127-132.			
2003	De Bouyn et al. Hepatic focal nodular hyperplasia in children previously treated for			
	a solid tumor. Cancer 2003;97:3107-13.			
Nodular r	Nodular regenerative hyperplasia			
2012	Yoo et al. Dynamic MRI findings and clinical features of benign hypervascular			
	hepatic nodules in childhood cancer survivors. AJR 2013;201:178-184.			
2000	Brisse et al. Hepatic regenerating nodules: a mimic of recurrent cancer in children.			
	Pediatr Radiol 2000;30:386-393.			

Clinical practice guidelines

Year	Bibliography				
Liver injur	Liver injury				
2019	EASL Clinical Practice Guidelines: Drug-induced liver injury. European Association for the Study of the Liver. J Hepatol 2019;70:1222-1261.				
2018	Newsome et al. Guidelines on the management of abnormal liver blood tests. Gut 2018;67:6-19.				
2017	Shiha et al. Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic fibrosis: a 2016 update. Heptol Int 2017;11:1-30.				
Iron overle	oad				
2018	Valent et al. Diagnosis, management and response criteria of iron overload in myelodysplastic syndromes (MDS): updated recommendations of the Austrian MDS platform. Expert Review of Hematology 2018; 11:109-116.				
2014	Porter et al. Chapter 3 Iron overload and chelation. In: Cappellini MD, Cohen A, Porter J, et al., editors. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT) [Internet]. 3rd edition. Nicosia (CY): Thalassaemia International Federation; 2014.				
2011	Bacon et al. Diagnosis and Management of Hemochromatosis: 2011 Practice Guideline by the American Association for the Study of Liver Diseases. Hepatol 2011;54:328-343.				
2010	EASL Clinical practice guidelines: HFE Hemochromatosis. European Association for the Study of the Liver. J Hepatol 2010;53:3-22.				

Cellular liver injury (ALT) and biliary tract injury (gGT)

Who needs surveillance?

Mulder et al. Hepatic late adverse effects after antineoplastic treatment for childhood cancer. Cochrane Database Syst Rev 2019;4:CD008205.

Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Systematic review	7,876 childhood cancer	Chemotherapy:	Outcome definitions:	<u>Strengths</u>
including 33 cohort	survivors (ranging from 19-	31/33 studies	- Liver histology: liver fibrosis, cirrhosis	Comprehensive search
studies examining	2,753 per study) aged <21		- Cellular liver injury: elevated ALT or AST	strategy
the risk of hepatic	years at primary cancer	Radiotherapy to fields	 Hepatobiliary dysfunction or biliary tract injury: 	
late adverse	diagnosis	involving the liver:	elevated gGT, ALP or bilirubin	Limitations
effects in		14/33 studies	- Liver synthetic dysfunction: abnormal prothrombin time	Heterogeneity of included
childhood cancer	Primary cancer diagnosis:		or albumin	studies
survivors	Various	HSCT:	Cut-off limit for normal and abnormal liver enzyme values	
		15/33 studies	as specified by the authors of the original	Risk of bias:
Treatment era:	Age at primary cancer		Studies	- Selection bias:
1962-2006	<u>diagnosis:</u>	Hepatectomy:		Low risk: 6/33 studies
	Median age ranging from	4/33 studies	Prevalence elevated ALT > upper limit normal:	High risk: 8/33 studies
Follow-up:	0.2-10.2 yr		5.8%-52.8% in 8 studies	Unclear: 19/33 studies
Ranging from				- Attrition bias:
median 2.0 yr since	Age at follow-up:		Prevalence elevated ALT > twice upper limit normal:	Low risk: 28/33 studies
end of treatment -	Median age ranging from		0.9%-44.8% in 4 studies	High risk: 2/33 studies
25.1 yr since	9.7-32.0 yr			Unclear: 3/33 studies
primary cancer			Prevalence elevated AST > upper limit normal:	- Detection bias:
diagnosis			1.1-13.0% in 2 studies	Low risk: 29/33 studies
				High risk: 0/33 studies
			Prevalence elevated AST > twice upper limit normal:	Unclear: 4/33 studies
			2.3% in 1 study	- <u>Confounding:</u>
				Low risk: 2/33 studies
			Prevalence elevated gGT > upper limit normal:	High risk: 16/33 studies
			5.3% in 1 study	Not applicable: 15/33
				studies
			Prevalence elevated gGT > twice upper limit normal:	
			0.9% in 1 study	

	Prevalence elevated ALP > upper limit normal: 4.3%-11.1% in 2 studies	
	Prevalence elevated bilirubin > upper limit normal: 0.0%-8.7% in 3 studies	
	<u>Risk factors for cellular liver injury (elevated ALT):</u> - Radiotherapy to fields involving the liver (especially after a high percentage of the liver irradiated), - Higher BMI	
	 Longer follow-up time Older age at evaluation increased the risk of cellular liver injury in multivariable analyses in 2 studies 	
	 Busulfan Thioguanine Hepatic surgery 	
	 Chronic viral hepatitis C Metabolic syndrome Use of statins Non-Hispanic white ethnicity 	
	 Higher alcohol intake (> 14 units per week) increased the risk of cellular liver injury in multivariable analyses in 1 study 	
	Chronic viral hepatitis was shown to increase the risk of cellular liver injury in 6 univariable studies	
	Risk factors for biliary tract injury (elevated gGT): - Radiotherapy involving the liver - Higher BMI	
	 - нідпег аксолої іптаке (> 14 units per week) - Longer follow-up time - Older age at cancer diagnosis increased the risk of biliary tract injury in a multivariable 	
	analysis in 1 study	

Footnote 1: For the risk of bias, results of the Cochrane systematic review are shown. Criteria for risk of bias assessment by Cochrane may slightly differ from the IGHG criteria. Footnote 2: More detailed results regarding risk factors are shown in the evidence tables of Green 2019 and Mulder 2013.

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase, gGT, gamma-glutamyltransferase; HSCT, hematopoietic stem cell transplantation.

Who needs surveillance?

Green et al. Serum ALT elevations in survivors of childhood cancer. A report from the St. Jude Lifetime Cohort Study. Hepatology 2019;69:94-106.

Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Retrospective	4,421 childhood cancer	Chemotherapy:	Outcome definitions:	Risk of bias:
cohort study	survivors of whom 2,753	- Methotrexate: 1,328	Hepatocellular injury: ALT > upper limit of normal	- <u>Selection bias:</u> high risk,
	were included in the study	(48.3%)	(Either \geq 19 U/L for females and \geq 30 U/L for males;	study group consisted of
Treatment era:	group; 2,751 underwent liver	- High-dose methotrexate:	or \geq 40 U/L according to institutional standards)	2,753/4,421 (62.3%) of
1962-2000	function testing	747 (27.2%); median		the original cohort of
		15,212.9 (interquartile	Prevalence elevated ALT > upper limit normal	survivors.
Follow-up:	Primary cancer diagnosis:	range 4,064.5 to 21,697.3)	according to sex-specific standards:	- Attrition bias: low risk,
Median 23.2	Various	mg/m ²	1,137/2,751 (41.3%)	outcome was assessed
(interquartile		- Mercaptopurine: 1,072		in 2,751/2,753 (99.9%)
range 17.6-29.7) yr	Age at primary cancer	(39.0%)	Prevalence elevated ALT > upper limit normal	of the study group.
since diagnosis	diagnosis:	- Thioguanine: 26 (0.9%)	according to institutional standards:	- Detection bias: unclear
	Median 7.4 (interquartile	 Dactinomycin: 400 (14.5%) 	419/2,751 (15.2%)	if blinding of outcome
	range 3.3-13.2) yr	- Busulfan: 23 (0.8%)		assessment, but the
		- Carmustine: 12 (0.4%)	Risk factors for hepatocellular liver injury (ALT >	outcome measurement
	Age at follow-up:	- Melphalan: 5 (0.2%)	upper limit of normal) according to sex-specific	was not likely to be
	Median 31.4 (interquartile	 Asparaginase: 935 (34.0%) 	values using multivariable Poisson regression	influenced by lack of
	range 25.8-37.8) yr		<u>analysis:</u>	blinding.
		Radiotherapy to fields	- Radiotherapy to fields involving the liver treated	 <u>Confounding</u>: low risk,
	Hepatitis virus infection:	involving the liver:	to ≥ 15 Gy per 10% volume increase: RR 1.06	analyses were adjusted
	- 7/73 (9.6%) hepatitis B	- 437/2,751 (15.9%)	(95% CI 1.03-1.08)*	for cancer treatment
	seropositive	 Hepatic irradiation: 368 	 Busulfan vs. none: RR 1.54 (95% CI 1.02-2.33)* 	and follow-up.
	- 98/1,578 (6.2%) hepatitis	(13.4%)	- Thioguanine vs. none: RR 1.38 (95% Cl 1.02-	
	C seropositive	- TBI: 69 (2.5%)	1.85)*	
			- Hepatic surgery vs. none: RR 1.90 (95% CI 1.45-	
	Acute liver disease:	Radiotherapy dose:	2.49)*	
	12/2,751 (0.4%) SOS	 Median percentage of liver 	- Age at evaluation per yr: RR 1.01 (95% CI 1.00-	
		that received 10 Gy: 51.4%	1.01)*	
	BMI:	- Median percentage of liver	- BMI ≥ 25 vs. <25: RR 1.60 (95% CI 1.42-1.81)*	
	- 763 (27.7%) overweight	that received 15 Gy: 34.6%	- Hepatitis C grade ≥1 vs. <1: RR 1.76 (95% CI 1.52-	
	- 959 (34.9%) obese		2.02)*	

- Median percentage of liver	- Metabolic syndrome vs. none: RR 1.40 (95% Cl	
	- Statins (atorvastatin, rosuvastatin, simvastatin)	
Hepatectomy:	vs. none: RR 1.20 (95% Cl 1.02-1.42)*	
24/2,751 (0.9%)	- Non-Hispanic white ethnicity vs. non-Hispanic	
	black or other: RR 1.37 (95% Cl 1.18-1.58)*	
HSCT:	(Analysis with radiotherapy involving liver	
- Total: 76/2,751 (2.8%)	treated to \geq 20 Gy provided comparable results)	
- Allogeneic: 47 (1.7%)	 No significant effect of methotrexate, 	
- Autologous: 29 (1.1%)	mercaptopurine, dactinomycin, HSCT, alcohol	
(2 participants included	intake, gender, educational level and age at	
who underwent both	diagnosis in univariable analysis and therefore	
allogeneic and autologous	not included in the multivariable model	
HSCT)		
Blood transfusion: nm		

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase, BMI, body mass index; gGT, gamma-glutamyltransferase; HSCT, hematopoietic stem cell transplantation; nm, not mentioned; RR, relative risk; SOS: sinusoidal obstruction syndrome; TBI, total body irradiation; *, significant.

Who needs surveillance?

Mulder et al. Surveillance of hepatic late adverse effects in a large cohort of long-term survivors of childhood cancer: prevalence and risk factors. Eur J Cancer 2013;49:185-93.

2013) 151105 551				
Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Retrospective	1,795 childhood cancer	Chemotherapy:	Outcome definitions:	Risk of bias:
cohort study	survivors of whom 1,404	- Any: 1,204/1,362 (88.4%)	 Hepatocellular injury: ALT > upper limit of 	 Selection bias: low risk,
	were included in the study	 Methotrexate: 392 (28.8%) 	normal (≥ 34 U/L for females, ≥ 45 U/L for males	study group consisted of
Treatment era:	group; 1,362 underwent liver	- Mercaptopurine: 352	and children < 15 years)	1,404/1,795 (78.2%) of
1966-2003	function testing	(25.8%)	- Biliary tract injury: gGT > upper limit of normal (≥	the original cohort of
		- Thioguanine: 98 (7.2%)	40 U/L for females, \geq 60 U/L for males, \geq 56 U/L	survivors.
Follow-up:	Primary cancer diagnosis:	- Dactinomycin: 397 (29.1%)	for children < 15 years)	- Attrition bias: low risk,
Median 12.4	Various	- Busulphan: 10 (0.7%)		outcome was assessed
(range 5.0-36.1) yr		- Other antimetabolites: 426	Prevalence elevated ALT > upper limit normal:	in 1,362/1,404 (97.0%)
since diagnosis	Age at primary cancer	(31.3%)	79/1,362 (5.8%)	of the study group.
_	diagnosis:	- Other cytotoxic antibiotics:		- Detection bias: unclear
	Median 5.9 (range 0.0-17.8)	633 (46.5%)	Prevalence elevated ALT > twice upper limit	if blinding of outcome
	yr	- Other alkylating agents: 715	normal:	assessment, but the
		(52.5%)	12/1,362 (0.9%)	outcome measurement
	Age at follow-up:	- Plant alkaloids: 1115		was not likely to be
	Median 19.5 (range 5.8-47.0)	(81.9%)	Prevalence elevated gGT > upper limit normal:	influenced by lack of
	yr	- Other chemotherapeutics:	68/1,295 (5.3%)	blinding.
		837 (61.5%)		- Confounding: low risk,
	Hepatitis virus infection:		Prevalence elevated gGT > twice upper limit	analyses were adjusted
	0/1362 (0.0%) (participants	Chemotherapy dose: nm	normal:	for cancer treatment
	with hepatitis virus infection		12/1,295 (0.9%)	and follow-up.
	excluded according to	Radiotherapy to fields		
	eligibility criteria for the	involving the liver:	Risk factors for hepatocellular liver injury (ALT >	
	study)	- 123/1,362 (9.0%)	upper limit of normal) in multivariable logistic	
		- Abdomen: 102 (7.5%)	regression analysis:	
	Acute liver disease:	- TBI: 21 (1.5%)	- Radiotherapy to fields involving the liver vs.	
	0/1362 (0.0%) SOS		none: OR 2.34 (95% Cl 1.07-5.13)*	
	(participants with SOS	Radiotherapy dose:	- Methotrexate vs. none: OR 1.22 (95% CI 0.53-	
	excluded according to	Median 20.0 (5.0 to 46.0) Gy	2.84)	
	eligibility criteria for the		- Mercaptopurine vs. none: OR 0.84 (95% CI 0.36-	
	study)	Hepatectomy:	1.99)	
		35/1,362 (2.6%)	- Thioguanine vs. none: OR 1.40 (95% CI 0.38-5.18)	

BMI: nm		- Dactinomycin vs. none: OR 0.71 (95% Cl 0.29-	
	BMT:	1.76)	
	61/1.362 (4.5%)	- Busulfan vs. none: OR 3.9 (95% CI 0.29-32.90)	
	- , , , ,	- Other antimetabolites vs. none: OR 0.61 (95% Cl	
	Blood transfusion: nm	0.24-1.56)	
		- Other cytotoxic antibiotics vs. none: OR 1.91	
		(95% CI 1.00-3.68)	
		- Other alkylating agents vs. none: OR 0.63 (95% Cl	
		0.32-1.26)	
		- Plant alkaloids vs. none: OR 2.14 (95% CI 0.85-	
		5.38)	
		- Other chemotherapeutic agents vs. none: OR	
		0.90 (95% CI 0.38-2.17)	
		- Liver resection vs. none: OR 1.87 (95% CI 0.38-	
		9.07)	
		- Age at diagnosis in yr: OR 1.06 (95% Cl 1.00-1.13)	
		- Time since cancer diagnosis in yr: OR 1.10 (95%	
		Cl 1.05-1.15)*	
		 Male vs. female: OR 1.18 (95% CI 0.67-2.08) 	
		 BMI z-score: OR 1.67 (95% CI 1.37-2.03)* 	
		 Alcohol intake <7 units per week vs. none: OR 	
		1.21 (95% CI 0.63-2.30)	
		- Alcohol intake 7-14 units per week vs. none: OR	
		0.87 (95% Cl 0.33-2.31)	
		 Alcohol intake >14 units per week vs. none: OR 	
		1.67 (95% Cl 1.37-2.03)*	
		Risk factors for biliary tract injury (gG1 > upper	
		limit of normal) in multivariable logistic regression	
		<u>analysis:</u>	
		- Radiotherapy to fields involving the liver vs.	
		Note: UK 5.45 (95% CI 2.51-11.82)*	
		1 91)	
		. Mercantopurine vs. pope: OR 0.64 (05% CL 0.25	
		1 64)	
		- Thioguaning vs. none: OR 0.51 (95% CI 0.09-2.80)	
		- Dactinomycin vs. none: OR 0.31 (35% CI 0.03-2.80)	
		1 21)	
		- Busulfan vs. none: OB 4 03 (95% CL0 33-48 94)	
		- Busultan vs. none: OR 4.03 (95% CI 0.33-48.94)	

	· · · · · · · · · · · · · · · · · · ·
- Other antimetabolites vs. none: OR 0.81 (95%	
0.31-2.10)	
- Other cytotoxic antibiotics vs. none: OR 1.45	
(95% CI 0.72-2.91)	
- Other alkylating agents vs. none: OR 0.89 (95%	CI
0.43-1.87)	
- Plant alkaloids vs. none: OR 2.65 (95% CI 0.96-	
7.31)	
- Other chemotherapeutic agents vs. none: OR	
1.61 (95% CI 0.60-4.30)	
- Liver resection vs. none: OR 1.09 (95% CI 0.12-	
9.69)	
- Age at diagnosis in yr: OR 1.08 (95% CI 1.01-	
1.15)*	
- Time since cancer diagnosis in yr: OR 1.13 (95%	,
CI 1.07-1.18)*	
- Male vs. female: OR 0.71 (95% CI 0.38-1.31)	
- BMI z-score: OR 1.43 (95% CI 1.14-1.81)*	
- Alcohol intake <7 units per week vs. none: OR	
0.96 (95% CI 0.48-1.93)	
- Alcohol intake 7-14 units per week vs. none: O	3
1.14 (95% CI 0.43-3.01)	
- Alcohol intake >14 units per week vs. none: OF	
3.04 (95% Cl 1.16-7.96)*	

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase, BMI, body mass index; BMT, bone marrow transplantation; gGT, gamma-glutamyltransferase; nm, not mentioned; OR, odds ratio; SOS: sinusoidal obstruction syndrome; TBI, total body irradiation; *, significant.

Iron overload

Who needs surveillance? At what frequency should surveillance be performed?

Sirvent et al. Prevalence and risk factors of iron overload after hematopoietic stem cell transplantation for childhood acute leukemia: a LEA study. Bone Marrow Transplant 2017;52:80-87.

Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Prospective cohort	420 childhood leukemia	HSCT:	Outcome definitions:	Evaluation of liver iron
study	survivors treated with HSCT	- Total: 384/384 (100%)	Iron overload: serum ferritin level ≥350 ng/ml with	concentration by MRI was
	of whom 384 had at least	- Allogeneic: 322 (83.9%)	an erythrocyte sedimentation rate at an hour <50	recommended in patients
Treatment era:	one ferritin value	- Autologous: 62 (16.1%)	mm (value is slightly above the upper limit of	with iron overload.
1982-2011			normal of most laboratories)	
	Primary cancer diagnosis:	TBI-based regimen:		127/384 had at least 2 ferritin
Follow-up:	ALL (68.2%), AML (31.8%)	257/384 (66.9%)	Prevalence iron overload:	evaluations, of whom 68 with
Mean 9.98 ± 0.35			- 162 (42.2%, 95% Cl 37.2-47.2%) serum ferritin	untreated iron overload.
yr from HSCT to	Age at HSCT:	Busulfan-based regimen:	level ≥350 ng/ml	
last visit	Median 8.8 ± 0.25 yr	127/384 (33.1%)	- 51 (13.3%, 95% Cl 10.1-17.2%) serum ferritin	Among the 162 patients with
			level ≥1000 ng/mL	a serum ferritin level ≥ 350
	<u>Age at follow-up:</u> nm	Blood transfusion: nm		ng/mL, 17 underwent liver
			Risk factors for iron overload (serum ferritin level	iron concentration by MRI.
	Hepatitis virus infection: nm		≥350 ng/ml) using multivariable logistic regression	Liver iron concentration was
			analysis:	above the upper limit of
	Acute liver disease:		 Age at HSCT >4.7-≤8.2 yr vs. ≤4.7 yr: 	the normal range (i.e. 2
	140/322 (43.5%) allogeneic		OR 1.46 (95% Cl 0.70-3.05)	mg/gdw) in 1//1/ patients.
	HSCT recipients grade II-IV		 Age at HSCT >8.2-≤12.7 yr vs. ≤4.7 yr: 	There was a statistically
	acute GVHD or extensive		OR 5.36 (95% Cl 2.63-10.95)*	significant correlation
	chronic GVHD		 Age at HSCT >12.7 yr vs. ≤4.7 yr: 	between serum ferritin level
			OR 7.64 (95% Cl 3.73-15.64)*	and liver iron concentration
			- AML vs. ALL: OR 3.23 (95% Cl 1.47-7.13)*	by MRI.
			 Allogeneic, sibling vs. autologous: 	Disk of hiss.
			OR 2.53 (95% Cl 1.20-5.33)*	KISK OF DIds.
			- Allogeneic, alternative donor vs. autologous:	- <u>Selection bias.</u> uncledi now
			OR 4.34 (95% CI 2.07-9.12)*	were included in the
			- TBI-based regimen vs. busulfan-based regimen:	original cohort of survivors
			OR 2.45 (95% Cl 1.09-5.53)*	Attrition biast low rick
			- Status at transplant >complete remission 1 vs.	- <u>AUTILION DIAS:</u> IOW TISK,
			complete remission 1:	outcome was assessed in

OR 1 27 (95% CL0 79-2 06)	384/420 (91.4%) of the
011127 (5576 el 6.75 2.00)	study group
Risk factors for iron overload (serum ferritin level	- Detection bias: unclear if
>1000 ng/ml) using multivariable logistic	blinding of outcome
regression analysis:	assessment, but the
- Age at HSCT >4.7- \leq 8.2 vr vs. \leq 4.7 vr:	outcome measurement was
OR 3.87 (95% CI 0.78-19.31)	not likely to be influenced
- Age at HSCT >8.2- \leq 12.7 vr vs. \leq 4.7 vr:	by lack of blinding.
OR 5.08 (95% CI 1.05-24.65)*	- Confounding: high risk.
- Age at HSCT >12.7 yr vs. \leq 4.7 yr:	analyses were adjusted for
OR 20.40 (95% CI 4.57-91.14)*	cancer treatment and age
- AML vs. ALL: OR 1.55 (95% CI 0.60-4.02)	at HSCT, but not for red
- Allogeneic, sibling vs. autologous:	blood cell transfusions.
OR 2.14 (95% CI 0.66-6.95)	
- Allogeneic, alternative donor vs. autologous:	
OR 2.88 (95% CI 0.90-9.18)	
- TBI-based regimen vs. busulfan-based regimen:	
OR 1.22 (95% CI 0.44-3.37)	
 Status at transplant >complete remission 1 vs. 	
complete remission 1:	
OR 2.04 (95% Cl 1.03-4.03)*	
Rick factors for iron overload (serum ferritin level	
>350 ng/ml) in 322 allogeneic HSCT recipients	
using multivariable logistic regression analysis:	
- Age at HSCT >4 7-<8 2 yr vs <4 7 yr \cdot	
OR 1 58 (95% CI 0 73-3 44)	
- Age at HSCT $> 8.2 - (12.7 \text{ yr})$	
OR 5.53 (95% CI 2.59-11.79)*	
- Age at HSCT >12.7 yr vs. ≤4.7 yr:	
OR 8.50 (95% CI 3.94-18.33)*	
- AML vs. ALL: OR 3.22 (95% CI 1.44-7.22)*	
- Allogeneic, alternative donor vs. sibling:	
OR 1.79 (95% CI 1.07-2.98)*	
- TBI-based regimen vs. busulfan-based regimen:	
OR 2.16 (95% CI 0.93-5.01)	
- Significant GVHD yes vs. no:	
OR 1.80 (95% Cl 1.09-2.99)*	
 Status at transplant >complete remission 1 vs. 	
complete remission 1:	

OR 1.08 (95% CI 0.64-1.82)
Risk factors for iron overload (serum ferritin level
≥1000 ng/ml) in 322 allogeneic HSCT using
multivariable logistic regression analysis:
 Age at HSCT >4.7-≤8.2 yr vs. ≤4.7 yr:
OR 4.11 (95% CI 0.81-20.74)
 Age at HSCT >8.2-≤12.7 yr vs. ≤4.7 yr:
OR 3.86 (95% CI 0.76-19.50)
 Age at HSCT >12.7 yr vs. ≤4.7 yr:
OR 20.34 (95% CI 4.48-92.39)*
- AML vs. ALL: OR 1.51 (95% Cl 0.56-4.07)
- Allogeneic, alternative donor vs. sibling:
OR 1.39 (95% CI 0.70-2.79)
- TBI-based regimen vs. busulfan-based regimen:
OR 1.18 (95% CI 0.40-3.48)
- Significant GVHD yes vs. no:
OR 1.70 (95% CI 0.86-3.35)
 Status at transplant >complete remission 1 vs.
complete remission 1:
OR 1.74 (95% CI 0.85-3.54)*
Iron overload over time:
Mean serum ferritin levels decreased from 883
ng/mL at first evaluation to 581 ng/mL at last
evaluation (mean time between evaluations 3.68
yr) among 68 survivors with untreated iron
overload with at least 2 measurements.

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; GVHD, graft-versus-host disease; HSCT, hematopoietic stem cell transplantation; nm, not mentioned; OR, odds ratio; TBI, total body irradiation; *, significant.

Who needs surveillance?

Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Retrospective	75 childhood cancer	HSCT:	Outcome definitions:	Blood samples were obtained
cohort study	survivors	4 (5.3%)	- Iron concentration by MRI	on the same day as the MRI evaluation
Treatment era:	Primary cancer diagnosis:	Treatment intensity:	Pancreas: R2*>30 Hz abnormal	
2004-2009	ALL (30.7%), AML (13.3%).	- Least-moderately intensive:	Heart: T2* <20 ms abnormal	Liver/pancreas R2* and heart
	germ cell tumor (18.7%),	39 (52.0%)	- Iron status by serum markers (abnormal values	T2*, indicators of tissue iron
Follow-up:	osteosarcoma (12.0%),	- Very intensive: 22 (29.3%)	not reported)	content, were assessed using
Median 4.4 (range	Ewing sarcoma (9.3%),	- Most intensive: 14 (18.7%)		multiecho gradient echo
0.2-7.6) yr;	Wilms tumor (5.3%),		Prevalence abnormal iron concentration by MRI:	technique.
Median 4.9 (range	rhabdomyosarcoma (9.3%),	PRBC transfusions:	- Liver: 36/73 (49.3%)	
1.4-7.9) since last	nasopharyngeal carcinoma	- Total: 67 (89.3%)	- Pancreas: 19/72 (26.4%)	Both hepatic and pancreatic
transfusion	(1.4%)	- <10: 31 (41.3%)	- Heart: 0/74 (0%)	R2* were positively correlated
		- ≥10: 36 (48.0%)		with serum ferritin, serum
	Age at diagnosis:		Prevalence abnormal iron serum markers:	iron, the percentage of
	Median 7.7 (range 1.8-20.2)		- 21/74 (28.4%) elevated serum ferritin levels	transferrin saturation, and
	yr		- 2/71 (2.8%) elevated serum iron levels	weight-adjusted cumulative
			 3/75 (4%) elevated iron-binding capacity 	PRBC volume.
	Age at follow-up:		- 5/71 (7%) elevated percentage of transferrin	
	Median 14 (range 8-25.6) yr		saturation	Having undergone HSCT was
				associated with increased
	Hepatitis virus infection: nm		Risk factors for increased liver iron concentration	liver iron concentration (P
			using multivariable regression analysis:	<0.0001) in univariable
	Acute liver disease: nm		- Weight-adjusted cumulative PRBC volume	analysis, but because there
			(p<0.0001) associated with a 0.03 mg/g increase	were only 4 patients in this
			III LIC for each mL/kg transfused	group, this variable was not
	homo: H62D C282Y hotors		- Age at utagriosis ($p<0.0001$) associated with a	
			increase in age	anaiyses.
			- Final model explained 52% of the variance in LIC	Risk of bias:
				- Selection bias: high risk
				75/157 (47.8%) eligible
				survivors were included in

		the original cohort of
		survivors.
		- Attrition bias: low risk,
		outcome was assessed in
		73/75 (97.3%) of the study
		group.
		- Detection bias: low risk, in
		addition to the study
		radiologist's blinded
		interpretation of MRIs
		relative to study aims, a
		separate, blinded
		radiologist reviewed MRIs
		for evidence of non-cardiac
		abnormalities.
		 <u>Confounding</u>: low risk,
		analyses were adjusted for
		cancer treatment and age
		at diagnosis.

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; GVHD, graft-versus-host disease; HSCT, hematopoietic stem cell transplantation; nm, not mentioned; OR, odds ratio; PRBC, packed red blood cells.

At what frequency should surveillance be performed?

Study design Treatment era Participants Treatment Main outcomes Addition Years of follow-up Vears of follow-up Addition Addition Addition	dditional remarks
Longitudinal 133 childhood cancer HSCT: Outcome definitions: The total	ne total number of serum
prospective cohort survivors 133 (100%) allogeneic Serum ferritin >110 ng/ml ferritin	rritin measurements per
study patients	atients is not reported.
Primary cancer diagnosis: TBI: Prevalence abnormal serum ferritin at 1 yr post-	
Treatment era: ALL (51%), AML (58%), CML 127 (95.5%) HSCT: Risk of	sk of bias:
1990-2005 (24%) 124 (93.2%) - <u>Selec</u>	Selection bias: unclear how
TBI dose: many	many survivors were
Follow-up: Age at HSCT: Range 8-14.4 Gy Serum ferritin levels over time: include	included in the original
Mean 5.6 (range 1- Mean 9.1 (range 0.6-21.4) yr Mean serum ferritin level at 1 yr post-HSCT was cohor	cohort of survivors.
15) yr from HSCTBlood transfusions:1158 (range 22-3264) ng/ml and declined over- Attrit	Attrition bias: unclear for
Age at follow-up: 133 (100%) time how r	how many patients serum
18% had features of chronic ferriti	ferritin was longitudinally
GVHD meas	measured over time.
	Detection bias: unclear if
Hepatitis virus infection: nm blindi	blinding of outcome
asses	assessment, but the
Acute liver disease: nm outco	outcome measurement was
	not likely to be influenced
100 by lac	by lack of blinding.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Vears port_HSCT	

Chotsampancharoen et al. Iron overload in survivors of childhood leukemia after allogeneic hematopoietic stem cell transplantation. Pediatr Transplant 2009;13:348-352.

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; HSCT, hematopoietic stem cell transplantation; nm, not mentioned.

Clinical practice guidelines

Cellular liver injury

What surveillance modality should be used?

EASL Clinical Practice Guidelines: Drug-induced liver injury. European Association for the Study of the Liver. J Hepatol 2019;70:1222-1261.

Recommendation ¹	Level of evidence ²
Grade C: ALT, ALP and total bilirubin are the standard analytes to define liver damage and liver dysfunction in drug-	Extrapolation from level 2b studies
induced liver injury. AST values can be used to reliably substitute ALT in calculating the pattern of injury when the latter	(exploratory cohort studies with
is unavailable at drug-induced liver injury recognition, whereas gGT is less reliable as an ALP substitute.	good reference standards)
Grade B: Persistently elevated total bilirubin and ALP in the second month from drug-induced liver injury onset should be	Level 1b studies (individual
used as a marker for chronic drug-induced liver injury.	inception cohort studies).

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase, gGT, gamma-glutamyltransferase.

¹Grades of recommendation from the Oxford Centre for Evidence-based Medicine

A: Consistent level 1 studies.

B: Consistent level 2 or 3 studies *or* extrapolations from level 1 studies.

C: Level 4 studies or extrapolations from level 2 or 3 studies.

D: Level 5 evidence or troublingly inconsistent or inconclusive studies of any level.

² Level of evidence based on the Oxford Centre for Evidence-based Medicine and recommended for EASL CPGs Level

1: Systematic reviews (SR) (with homogeneity) of randomized controlled trials (RCT); Further research is unlikely to change our confidence in the estimate of benefit and risk.

2: RCT or observational studies with dramatic effects; SR of lower quality studies (i.e. non-randomized, retrospective).

3: Non-randomized controlled cohort/follow-up study/control arm of randomized trial (SR is generally better than an individual study); Further research (if performed) is likely to have an impact on our confidence in the estimate of benefit and risk and may change the estimate.

4: Case-series, case-control, or historically controlled studies (systematic review is generally better than an individual study).

5: Expert opinion (mechanism-based reasoning); Any estimate of effect is uncertain.

What surveillance modality should be used?	
<i>Newsome et al.</i> Guidelines on the management of abnormal liver blood tests. Gut 2018;67:6-19.	
Recommendation ¹	Level of evidence ²
Grade B: Initial investigation for potential liver disease should include bilirubin, albumin, ALT, ALP and gGT, together with	Level 2b
a full blood count if not already performed within the previous 12 months.	
Grade D: Abnormal liver blood test results should only be interpreted after review of the previous results, past medical	Level 5
history and current medical condition.	
Grade D: The extent of liver blood test abnormality is not necessarily a guide to clinical significance. This is determined	Level 5
by the specific analyte which is abnormal (outside the reference range) and the clinical context.	

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; gGT, gamma-glutamyltransferase.

¹Grades of recommendation

A: Consistent level 1 studies.

B: Consistent level 2 or 3 studies *or* extrapolations from level 1 studies.

C: Level 4 studies *or* extrapolations from level 2 or 3 studies.

D: Level 5 evidence or troublingly inconsistent or inconclusive studies of any level.

² Level of evidence

1: Systematic reviews (SR) (with homogeneity) of randomized controlled trials (RCT); Further research is unlikely to change our confidence in the estimate of benefit and risk.

2: RCT or observational studies with dramatic effects; SR of lower quality studies (i.e. non-randomized, retrospective).

3: Non-randomized controlled cohort/follow-up study/control arm of randomized trial (SR is generally better than an individual study); Further research (if performed) is likely to have an impact on our confidence in the estimate of benefit and risk and may change the estimate.

4: Case-series, case-control, or historically controlled studies (systematic review is generally better than an individual study).

5: Expert opinion (mechanism-based reasoning); Any estimate of effect is uncertain.

What surveillance modality should be used?		
Shiha et al. Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic		
fibrosis: a 2016 update. Heptol Int 2017;11:1-30.		
Recommendation ¹	Level of evidence ²	
Grade 1: Conventional ultrasound cannot be used for the diagnosis of hepatic fibrosis.	В	
Grade 1: Conventional ultrasound for diagnosis of early cirrhosis should be confirmed by additional studies.	С	
Grade 1: Conventional CT and MRI have higher specificity and sensitivity than conventional ultrasound for the diagnosis	А	
of cirrhosis.		
Grade 1: Transient elastography is an established technique and is recommended as the initial assessment for significant	А	
liver fibrosis and cirrhosis.		
Grade 1: Transient elastography is a highly reproducible and user-friendly technique for assessing liver fibrosis in	А	
patients with chronic liver disease. However, because transient elastography reproducibility is significantly reduced in		
patients with steatosis, increased BMI, lower degrees of hepatic fibrosis and narrow intercostal spaces, caution could be		
warranted in the clinical use of transient elastography as surrogate for liver biopsy.		
Grade 1: Liver biopsy is considered as the gold standard for diagnosing liver fibrosis, but sampling errors and both intra-	А	
and inter-observer agreement on biopsy samples may lead to poor reproducibility for many liver biopsies, and the		
procedure is invasive and expensive.		
Grade 2: Compared to liver biopsy, FibroTest and transient elastography are more cost-effective.	A	

¹Grades of recommendation adapted from GRADE

Strong; Factors influencing the strength of the recommendation included the quality of the evidence, presumed patient-important outcomes, and cost.
 Weak; Variability in preferences and values, or more uncertainty. Recommendation is made with less certainty, or higher cost or resource consumption.

² Level of evidence adapted from GRADE

A: High; Further research is very unlikely to change confidence in the estimate of the clinical effect.

B: Moderate; Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

C: Low or vert low; Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Any estimate of effect is uncertain.

What surveillance modality should be used?			
Valent et al. Diagnosis, management and response criteria of iron overload in myelodysplastic syndromes (MDS): updated recommendations of the Austrian MDS platform. Expert Review of Hematology 2018; 11:109-116.			
Recommendation ¹	Level of evidence		
Serum ferritin is recommended for daily practice in myelodysplastic syndromes (+++).	Not reported		
Specificity of the ferritin test per se is low. However, when liver enzymes and inflammation parameters are also tested,			
elevated ferritin levels are a sensitive and rather specific parameter of the total body iron burden.			
Laboratory parameters and imaging studies to determine iron overload:	Not reported		
Transferrin saturation (++)			
Labile plasma iron (+/-)			
MRI and SQUID only recommended for patients in whom ferritin levels are very high and a concomitant liver disease or			
massive inflammation is present (+/-)			
Non-transferrin-bound free (plasma) iron (-)			

¹Grades of recommendation not explained in the manuscript.

What surveillance modality should be used?		
Porter et al. Chapter 3 Iron overload and chelation. In: Cappellini MD, Cohen A, Porter J, et al., editors. Guidelines for the Management of		
Transfusion Dependent Thalassaemia (TDT) [Internet]. 3rd edition. Nicosia (CY): Thalassaemia International Federation; 2014.		
Recommendation ¹	Level of evidence	
Grade B: Liver iron concentration (biopsy, SQUID, MRI) can be used to calculate total body iron, and serum ferritin is an	Not reported	
approximate marker of liver iron concentration.		
Creates of recommendation not complement in the reconversion		

¹Grades of recommendation not explained in the manuscript.

What surveillance modality should be used?		
Bacon et al. Diagnosis and Management of Hemochromatosis: 2011 Practice Guideline by the American Association for the Study of Liver		
Diseases. Hepatol 2011;54:328-343.		
Recommendation ¹	Level of evidence ²	
Grade 1: In a patient with suggestive symptoms, physical findings, or family history of hemochromatosis, a combination	В	
of transferrin saturation and ferritin should be obtained rather than relying on a single test.		
Grade 1: Diagnostic strategies using serum iron markers should target high-risk groups such as those with a family	В	
history of hemochromatosis or those with suspected organ involvement.		

¹Grades of recommendation

1: Strong; Factors influencing the strength of the recommendation included the quality of the evidence, presumed patient-important outcomes, and cost. 2: Weak; Variability in preferences and values, or more uncertainty. Recommendation is made with less certainty, or higher cost or resource consumption.

² Level of evidence

A: High; Further research is unlikely to change confidence in the estimate of the clinical effect.
B: Moderate; Further research may change confidence in the estimate of the clinical effect.
C: Low; Further research is very likely to impact confidence on the estimate of clinical effect.

What surveillance modality should be used?			
EASL Clinical practice guidelines: HFE Hemochromatosis. European Association for the Study of the Liver. J Hepatol 2010;53:3-22.			
Recommendation ¹	Level of evidence ²		
Grade 1: Patients with suspected iron overload should first receive measurement of fasting transferrin saturation and	В		
serum ferritin.			

¹Grades of recommendation according to GRADE

Strong; Defined as being 'confident that adherence to the recommendation will do more good than harm or that the net benefits are worth the costs'.
 Weak; Defined as being 'uncertain that adherence to the recommendation will do more good than harm OR that the net benefits are worth the costs'.

² Level of evidence according to GRADE

A: High; Randomized trials that show consistent results, or observational studies with very large treatment effects; Further research is very unlikely to change our confidence in the estimate of effect.

B: Moderate; Randomized trials with methodological limitations, or observational studies with large effect; Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

C: Low and very low; Observational studies without exceptional strengths, or randomized trials with very serious limitations; unsystematic clinical observations (e.g. case reports and case series; expert opinions) as evidence of very-low quality evidence; Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Any estimate of effect is very uncertain.