Who needs breast cancer surveillance?

1. What is the risk of breast cancer in childhood and young adult cancer survivors treated with 1-9 and 10-19 Gy chest radiation?		
Conclusion single studies		
Childhood cancer survivors		
In female childhood cancer survivors, higher chest radiation dose was significantly associated with an increased breast cancer risk (OR per 10 Gy: 3.9 (2.5-6.5)).	Veiga 2019#	
In female childhood cancer survivors, <5 Gy chest radiation was borderline significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for adjusted for type of first cancer, calendar year of follow-up, family history of breast or ovarian cancer, and chemotherapy (OR: 1.7 (1.0-3.0))		
In female childhood cancer survivors, >0-<10 Gy chest radiation was non-significantly associated with breast cancer risk as compared to no chest radiation adjusted for age at primary childhood cancer diagnosis, pathogenic/likely pathogenic mutation, alkylating agents, pelvic radiation and anthracyclines (HR 0.7 (0.2-2.8)). In female childhood cancer survivors, 10-<20 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for age at primary childhood cancer diagnosis, pathogenic/likely pathogenic mutation, alkylating agents, pelvic radiation and anthracyclines (HR 2.4 (0.4-15.0)).	Ehrhardt 2019	
In female childhood cancer survivors without pathogenic/likely pathogenic mutations, >0-<10 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for age at primary childhood cancer diagnosis, alkylating agents, pelvic radiation and anthracyclines (HR 1.2 (0.3-5.0)). In female childhood cancer survivors without pathogenic/likely pathogenic mutations, 10-<20 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for age at primary childhood cancer diagnosis, alkylating agents, pelvic radiation and anthracyclines (HR 1.2 (0.3-5.0)).		
In female childhood cancer survivors with breast cancer, 17 (14.0%) and 19 (15.7%) were treated with <10 Gy and 10-20 Gy chest radiation, respectively.	Demoor- Goldschmidt 2017	
In female childhood cancer survivors, 10-19 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to the general population (SIR: 30.6 (18.4-50.7)). in female childhood cancer survivors, 2-20 Gy (median 14 Gy) whole lung radiation was significantly associated with an increased breast cancer risk after as compared to the general population (SIR: 43.6 (27.1-70.1)). In female childhood cancer survivors, whole lung radiation (median 14 Gy (range 2-20 Gy)) was significantly associated with an increased breast cancer risk compared to mediastinal radiation (median 30 Gy (range 3-54 Gy)) adjusted for radiation dose (incidence rate ratio: 3.4 (1.6-7.2)). In female childhood cancer survivors, whole lung radiation (median 14 Gy (range 2-20 Gy)) was non-significantly associated with an increased breast cancer risk as compared to mediastinal radiation (median 40 Gy (range 5-54 Gy)) adjusted for radiation dose (incidence rate ratio: 1.8 (0.9-3.7)).	Moskowitz 2014#	
In female Wilms tumor survivors, 1-12 Gy and >12 Gy chest radiation were associated with an increased breast cancer risk as compared to the general population (SIR: 46.8 and 18.9, respectively) (unclear if significant as 95% CI not reported).	Lange 2014	

chest radiation dose adjusted for flank radiation dose, doxorubicin and age at Wilms tumor diagnosis (HR: 1.96 (1.45-2.69)). In female retinoblastoma survivors very low dose chest radiation (0.01-20.50 Gy) was non-significantly associated with an increased breast cancer risk as compared to no chest radiation in univariate analysis (DR 0.01-0-24 Gy vs. 0 Gy: 1.02 (0.55-w); DR 0.25-0.48 Gy vs. 0 Gy: 1.98 (0.61-w); DR 2000 Gy vs. 0 Gy: 0.99 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (DR 1.40-29.99 Gy; T.1 (2.9-17.0)). In enale childhood cancer survivors, 1.10-29 Gy Chest radiation was non-significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for age at childhood cancer, stration, chemotherapy, and primary cancer diagnosis (R1 1-9.9 Gy; 1.5 (0.3-8.1); RR 10-19.9 Gy; 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. Guibuut 2005 In Wilms tumor survivors, 1.0-7.9 Gy (median 1.2 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-29.6 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intatico waria function (DR: 5.8 (2.6-11.0)), it is nealewic	In female Wilms tumor survivors, higher chest radiation dose was significantly associated with an increased breast cancer risk as compared to lower		
In female retinoblastoma survivors very low dose chest radiation (0.01-20.50 Gy) was non-significantly associated with an increased breast cancer risk as compared to no chest radiation in univariate analysis (OR 0.01-0.24 Gy vs. 0 (9: 1.79 (0.55-w)), OR 0.25-0.49 Gy vs. 0 (9: 1.21 (0.75-0)). In female childhood cancer survivors, 1.140-29.99 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 1.140-29.99 Gy; 7.1 (2.9-17.0). (Recalculated dds ratios: nor-significant increased breast cancer risk atter 1.3-9.9 Gy (OR: 1.9 (0.7-5.4)) and significant increased breast cancer risk after 10-19.9 Gy OR: 6.5 (2.3-18.5)) compared to no chest radiation. In female childhood cancer survivors, 1.9-9 Gy (AR 1.140-29.99 Gy; 7.1 (2.9-17.0). (Recalculated odds ratios: nor-significantly associated with an increased breast cancer risk after 10-19.9 Gy OR: 6.5 (2.3-18.5)). Compared to no chest radiation. In female hildhood cancer survivors, 1.9-0 Gy (AR 1.40-29.99 Gy; 7.1 (2.9-17.0). (Recalculated odds ratios: nor-significantly increased breast cancer risk as compared to no chest radiation disted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1- 9.9 Gy . 1.5 (0.43-1); RR 1.0-19 Gy; J.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in a underestimation of risk. In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 1.7.5 Gy) chest radiation was on-significantly associated with an increased breast cancer	chest radiation dose adjusted for flank radiation dose, doxorubicin and age at Wilms tumor diagnosis (HR: 1.96 (1.45-2.69)).		
risk as compared to no chest radiation in univariate analysis (OR 0.01-0.24 Gy vs. 0 Gy: 1.79 (0.55-∞); OR 0.25-0.49 Gy vs. 0 Gy: 1.98 (0.61-∞); OR 20.50 Gy vs. 0 Gy: 0.92 (0.24-∞); OR 20.01 Gy vs. 0 Gy: 1.49 (0.68-∞)). In female childhood cancer survivors, 1.3 -01 3 Gy chest radiation and significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 1.30-1.139 Gy 1.9 (0.75.0)). In female childhood cancer, survivors, 1.3 -0.999 Gy chest radiation was inpficantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 1.140-29.99 Gy; 7 , 1 (2.9-17.0)). (Reclaulated odds ratios: non-significant) racesed breast (ancer risk as compared to no chest radiation adjusted for or get as childhood cancer, starting day, Gy OR: 5 , 5 (2.3-18.5) (compared to no chest radiation. (In female childhood cancer, starting day, Gy OR: 5 , 5 (2.3-18.5) (compared to no chest radiation adjusted for aget a childhood cancer, starting day, Gy OR: 5 , 5 (2.3-18.5) (compared to no chest radiation (as the study has a methodological limitation which may have resulted in an underestimation of risk. In within study has a methodological limitation which may have resulted in an underestimation of risk. In within study has a methodological limitation which may have resulted in an underestimation of risk. In within study has a methodological limitation which may have resulted in an underestimation of risk. In white the ron to treast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Hodgkin lymphoma survivors, 8.0 -27.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 4.5 Gy chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33	In female retinoblastoma survivors very low dose chest radiation (0.01->0.50 Gy) was non-significantly associated with an increased breast cancer	Little 2014	
20.50 Gyr s0 Gyr: 0.92 (0.24~9); OR 80.01 Gyr s. 0 Gyr 1.49 (0.68~9); Instant of the second of t	risk as compared to no chest radiation in univariate analysis (OR 0.01-0.24 Gy vs. 0 Gy: 1.79 (0.55- ∞); OR 0.25-0.49 Gy vs. 0 Gy: 1.98 (0.61- ∞); OR		
In female childhood cancer survivors, 1.30-11.39 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 1.30-11.39 GY 1.9 (0.7-5.0)). In female childhood cancer survivors, 11.40-23.99 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 1.140-23.99 Gy 7.1 (2.9-17.0)). (Recalculated odds ratios: non-significant increased breast cancer risk after 1.3-9.9 Gy (OR 1.140-23.99 Gy 7.1 (2.9-17.0)). (Recalculated odds ratios: non-significant increased breast cancer risk after 1.3-9.9 Gy (DR 5.1 (9.0-75.4)) and significant increased breast cancer risk as compared to no chest radiation adjusted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1.9.9 Gy 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 1.2 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 1.7 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.13 (0.64-2.77)). In female Hodgkin lymphoma survivors, 4-2.9 Gy ch	≥0.50 Gy vs. 0 Gy: 0.92 (0.24-∞); OR ≥0.01 Gy vs. 0 Gy: 1.49 (0.68-∞)).		
compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (DR 1.30 Cy: 1.9 (D.7-5.0)). In female childhood cancer survivors, 11.40-29.99 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (DR 1.14-02.99 Gy: 7.1 (2.9-17.0)). (Recalculated odds ratios: non-significant increased breast cancer risk as compared to no chest radiation. Guibout 2005 In female childhood cancer survivors, 1-9.9 Gy one standard age, castration, chemotherapy, and primary cancer diagnosis (RR 1-9.9 Gy: 3.7 (0.6-2.4.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. Guibout 2005 In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer vas secondary to low dose chest radiation adjusted for duration of post-radiation intact ovarian function (DR: 1.33 (D.64-2.77)). Taylor 2008 In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (DR: 1.33 (D.64-2.77)). Travis 2003* In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 1.75 Gy) chest radiation awa significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (DR: 2.21 (1.09-4.6)). Travis 2003* In female Hodgkin lymphoma survi	In female childhood cancer survivors, 1.30-11.39 Gy chest radiation was non-significantly associated with an increased breast cancer risk as	Inskip 2009#	
In female childhood cancer survivors, 11.40-29.99 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for primary cancer diagnosis and follow-up verars (0R 11.40-29.99 Gy; 7.1 (2.9-17.0)). (Recalculated odds ratios: non-significant increased breast cancer risk after 1.3-9.9 Gy (0R: 1.9 (0.7-5.4)) and significant increased breast cancer risk after 1.3-9.9 Gy (0R: 1.9 (0.7-5.4)) and significant increased breast cancer risk as compared to no chest radiation adjusted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1-9.9 Gy: 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in a underestimation of risk. In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SiR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 1.9 Gy) chest radiation of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 8.0-7.9 Gy (median 1.5 Gy) chest radiation of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 8.0-7.9 Gy (median 1.5 Gy) chest radiation of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). In female Hodgkin lymphoma survivors, 8.0-7.9 Gy (median 1.2 Gy) chest radiation of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). In female Hodgkin lymphoma survivors, 8.0-7.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). In female Hodgkin lymphoma survivors, 8.0-7.9 Gy (median 1.2 Gy) chest radiation adjusted for unation of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). In f	compared to no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 1.30-11.39 Gy: 1.9 (0.7-5.0)).		
no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 11.40-299 90; 7.1 (2-9-17.0)). (Recalculated odds ratios: non-significant increased breast cancer risk after 10-19.9 Gy OR: 6.5 (2.3-18.5)) compared to no chest radiation. Guibout 2005 In female childhood cancer survivors, 1-9.9 Gy and 10-19.9 Gy chest radiation were non-significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1-9.9 Gy: 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. Guibout 2005 In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Toylor 2008 Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (0R: 2.11 (1.09-4.46)). Krul 2017§ In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 17.5 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 7.3 Gy (median 1.2 Gy) chest radiation as on-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy (median 1.2 Gy) chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)).	In female childhood cancer survivors, 11.40-29.99 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to		
[Recalculated odds ratios: non-significant increased breast cancer risk after 1.3-9.9 Gy (OR: 1.9 (0.7-5.4)) and significant increased breast cancer risk after 10-19.9 Gy OR: 6.5 (2.3-18.5)) compared to no chest radiation. Guibout 2005 In female childhood cancer survivors, 1-9.9 Gy and 10-19.9 Gy chest radiation were non-significantly associated with an increased breast cancer risk a supervisor. Guibout 2005 9.9 Gy: 1.5 (0.3.8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. Taylor 2008 In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Taylor 2008 Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.31 (1.0-4.46)). Krul 2017\$ In female Hodgkin lymphoma survivors, 4-5.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). Travis 2003* In female Hodgkin lymphoma survivors, 4-5.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation asa ging rificantly associated with an increased breast cancer risk	no chest radiation adjusted for primary cancer diagnosis and follow-up years (OR 11.40-29.99 Gy: 7.1 (2.9-17.0)).		
after 10-19.9 Gy OK: 6.5 (2.3-18.5)) compared to no chest radiation. Guibout 2005 In female childhood cancer survivors, 1-9.9 Gy and 10-19.9 Gy chest radiation adjusted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1- 9.9 Gy: 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. Taylor 2008 In Wilms turnor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Taylor 2008 Hodgkin lymphoma survivors, 10 female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation and you for past-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). Krul 20175 In female Hodgkin lymphoma survivors, 4.5.2 Gy chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation dose delivered to the ovaries (RR 7-2.3.1 Gy: 4.1 (1.4-12.3)). Travis 2003* O -3-3 Gy chest radiation adjusted for ovarian radiation dose delivered to the ovaries (RR 7-2.3.1 Gy: 4.1 (1.4-12.3)). Travis 2003* O -3-3 Gy chest radiation adjusted for ovarian radiation dose delivered to the ovaries (RR 7-2.3.1 Gy: 4.1 (1.4-12.3)). Travis 2003* <td>(Recalculated odds ratios: non-significant increased breast cancer risk after 1.3-9.9 Gy (OR: 1.9 (0.7-5.4)) and significant increased breast cancer risk</td> <td></td>	(Recalculated odds ratios: non-significant increased breast cancer risk after 1.3-9.9 Gy (OR: 1.9 (0.7-5.4)) and significant increased breast cancer risk		
In female childhood cancer survivors, 1-9.9 Gy and 10-19.9 Gy chest radiation were non-significantly associated with an increased breast cancer risk as compared to no chest radiation adjusted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1-9.9 Gy: 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. Guibout 2005 In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Taylor 2008 Hodgkin lymphoma survivors In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 17.5 Gy) chest radiation of post-radiation intact ovarian function (OR: 1.38 (0.64-2.77)). In female Hodgkin lymphoma survivors, 4-6.3 Gy chest radiation agent cycles and radiation dose delivered to the ovarias (RR 4-6.9 Gy: 1.8 (0.7-4.5)). In Hodgkin hymphoma survivors, 4-6.3 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose delivered to the ovarias (RR 7-2.3.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) Travis 2003* In Hodgkin hymphoma survivors, 4-23.2 Gy chest radiation dose adlivened by exel survivors treated with mo	after 10-19.9 Gy OR: 6.5 (2.3-18.5)) compared to no chest radiation.		
as compared to no chest radiation adjusted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1- 9.9 Gy: 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation (a) spot adiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 1.7.5 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.13 (0.64-2.77)). In female Hodgkin lymphoma survivors, 4.0-2.9 Gy (median 1.7.5 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.13 (0.64-2.77)). In female Hodgkin lymphoma survivors, 4.0-29. Gy (median 1.7.5 Gy) chest radiation mass sociated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.11 (1.09-4.46)). In female Hodgkin lymphoma survivors, 4-23.1 Gy chest radiation as son-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-5.9 Gy: 1.8 (0.7-4.5)). In Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was son-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated Re based on post hoc analysis for 19 Gy vo. Gy: .385) In female Hodgkin	In female childhood cancer survivors, 1-9.9 Gy and 10-19.9 Gy chest radiation were non-significantly associated with an increased breast cancer risk	Guibout 2005	
9.9 Gy: 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an underestimation of risk. Taylor 2008 In Wilns tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Taylor 2008 Hodgkin lymphoma survivors. In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). In Hodgkin lymphoma survivors, 4-2.3 Cy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy (hest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation digusted for onumber of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) Travis 2003* Travis 2003* In Female	as compared to no chest radiation adjusted for age at childhood cancer, attained age, castration, chemotherapy, and primary cancer diagnosis (RR 1-		
underestimation of risk. In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Taylor 2008 Hodgkin lymphoma survivors In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 8-0.57.9 Gy (median 1.7.5 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 7-3.1 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose delivered to the ovaries (RR 7-23.1 Gy chest radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). Travis 2003* In female Hodgkin lymphoma survivors, 4-2.3 Cy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation d	9.9 Gy: 1.5 (0.3-8.1); RR 10-19.9 Gy: 3.7 (0.6-24.2)). Note that this study has a methodological limitation which may have resulted in an		
In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Taylor 2008 Hodgkin lymphoma survivors In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). Krul 20175 In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 1.7 Gy) chest radiation was son-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation as significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation as significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). Travis 2003* In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). 20035* In female Hodgkin lymphom	underestimation of risk.		
unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter). Hodgkin lymphoma survivors Hodgkin lymphoma survivors In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). Krul 20175 In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation agiusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy (median 1.2 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy (hest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). Travis 2003* (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) Verall conclusion Van Leeuwen 2003* In female Hodgkin lymphoma survivors, 4-6.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). Van Leeuwen 2003* 0 0.3.9 Gy chest radiation adjusted for ovarian radiation was non-significantly associated	In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is	Taylor 2008	
latter). Hodgkin lymphoma survivors In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). Krul 2017§ In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 1.7.5 Gy) chest radiation of post-radiation intact ovarian function (OR: 2.1 (1.09-4.46)). risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 4-0.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). Travis 2003* In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy v. 0. Gy: 3.85) In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). Van Leeuwen 2003§* 0 Overall conclusion Y studies (y) have	unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the		
Hodgkin lymphoma survivors Krul 20175 In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (0R: 1.33 (0.64-2.77)). Krul 20175 In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 17.5 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (0R: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). Travis 2003* In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). Travis 2003* (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) Overall conclusion Van Leeuwen 2003\$* 0-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). 2003\$* 2003\$* 0 Overall conclusion 7 studies Level A Risk after moderate dose (10-19 Gy) chest radiation: 7 studies	latter).		
In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). Krul 2017§ In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 1.7.5 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). Travis 2003* In hedgkin lymphoma survivors, 7-23.1 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). Travis 2003* Is female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose adle chemotherapy (RR: 1.11 (0.32-3.58)). Van Leeuwen 20035* In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation dyoung adult cancer survivors treated with moderate dose chest radiation (10-19 7 studies	Hodgkin lymphoma survivors		
risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)). In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 17.5 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation adjusted for duration of post-radiation intereased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). Overall conclusion Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer. Risk after low dose (1-9 Gy) chest radiation: There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (10-19 do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy.	In female Hodgkin lymphoma survivors, 3.0-7.9 Gy (median 4.9 Gy) chest radiation was non-significantly associated with an increased breast cancer	Krul 2017§	
In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 17.5 Gy) chest radiation was significantly associated with an increased breast cancer risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-5.9 Gy: 1.8 (0.7-4.5)). In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3.3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). Noverall conclusion Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19) Gy) have an increased risk of breast cancer. Risk after low dose (1-9 Gy) chest radiation: There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lo	risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 1.33 (0.64-2.77)).		
risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)). Travis 2003* In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). Travis 2003* In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). It hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). van Leeuwen 10 6.3.3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). 2003§* Overall conclusion 7 studies I evel A Gy have an increased risk of breast cancer. 7 studies Risk after now dose (19-9 Gy) chest radiation: 7 studies There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 7 studies Level A Gy have an increased risk of breast cancer risk. It is known tha	In female Hodgkin lymphoma survivors, 8.0-27.9 Gy (median 17.5 Gy) chest radiation was significantly associated with an increased breast cancer		
In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 7 <i>travis 2003</i> * 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). Overall conclusion Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer. Risk after low dose (1-9 Gy) chest radiation: There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy.	risk as compared to 0-2.9 Gy (median 1.2 Gy) chest radiation adjusted for duration of post-radiation intact ovarian function (OR: 2.21 (1.09-4.46)).		
0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)). In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) van Leeuwen 1n female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). van Leeuwen 00-3-3.9 Gy chest radiation adjusted for ovarian radiation. 7 studies Risk after moderate dose (10-19 Gy) chest radiation: 7 studies Gy) have an increased risk of breast cancer. 7 studies Risk after low dose (1-9 Gy) chest radiation: 7 studies There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19) 7 studies Level A 8 9 9 9 Gy) have an increased risk of breast cancer. 7 studies 1 Risk after low dose (1-9 Gy) chest radiation: 7 studies 1 1 There is moderate quality evidence that female childh	In female Hodgkin lymphoma survivors, 4-6.9 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to	Travis 2003*	
In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared van Leeuwen to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer. Risk after low dose (1-9 Gy) chest radiation: There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy.	0-3.9 Gy chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 4-6.9 Gy: 1.8 (0.7-4.5)).		
chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)). (Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). van Leeuwen 2003§* Overall conclusion Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer. 7 studies Risk after low dose (1-9 Gy) chest radiation: 7 studies There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 7 studies Level A 7 studies Level A Gy) have an increased risk of breast cancer. 7 studies Level B There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) 4 studies do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these Level B	In Hodgkin lymphoma survivors, 7-23.1 Gy chest radiation was significantly associated with an increased breast cancer risk as compared to 0-3.9 Gy		
(Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85) van Leeuwen In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared van Leeuwen to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). 2003§* Overall conclusion Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer. 7 studies Risk after low dose (1-9 Gy) chest radiation: 7 studies There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (10-19 7 studies Level A 2003 2003 Risk after low dose (1-9 Gy) chest radiation: 7 studies There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) 7 studies Level B 00 not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these Level B comparatively low doses compared to doses >10 Gy. 00 00 00	chest radiation adjusted for number of alkylating agent cycles and radiation dose delivered to the ovaries (RR 7-23.1 Gy: 4.1 (1.4-12.3)).		
In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). 2003§ * Overall conclusion Zoverall conclusion Risk after moderate dose (10-19 Gy) chest radiation: 7 studies Level A Zoverall conclusion Zove	(Estimated RR based on post hoc analysis for 19 Gy vs. 0 Gy: 3.85)		
to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)). 2003§* Overall conclusion Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Z studies Gy) have an increased risk of breast cancer. Z studies Level A Risk after low dose (1-9 Gy) chest radiation: T studies Level B There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) Z studies Level B Colspan="2">Comparatively low dose compared to doses >10 Gy.	In female Hodgkin lymphoma survivors, 4-23.2 Gy chest radiation was non-significantly associated with an increased breast cancer risk as compared	van Leeuwen	
Overall conclusion Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 7 studies Gy) have an increased risk of breast cancer. 2 studies Risk after low dose (1-9 Gy) chest radiation: 7 studies There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) 7 studies do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy. 2 studies	to 0.3-3.9 Gy chest radiation adjusted for ovarian radiation dose and chemotherapy (RR: 1.11 (0.32-3.58)).	2003§*	
Risk after moderate dose (10-19 Gy) chest radiation:7 studiesThere is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19Level AGy) have an increased risk of breast cancer.Risk after low dose (1-9 Gy) chest radiation:7 studiesThere is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy)2 studiesIntere is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy)Level Bdo not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy.Level B	Overall conclusion		
There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Level A Gy) have an increased risk of breast cancer. Risk after low dose (1-9 Gy) chest radiation: 7 studies There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) 7 studies do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy. Gy			
Gy) have an increased risk of breast cancer. Image: Comparatively low dose (1-9 Gy) chest radiation: 7 studies Risk after low dose (1-9 Gy) chest radiation: 7 studies There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) 2 studies do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy. 2 studies	Risk after moderate dose (10-19 Gy) chest radiation:	7 studies	
Risk after low dose (1-9 Gy) chest radiation:7 studiesThere is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy)Level Bdo not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at theseLevel Bcomparatively low doses compared to doses >10 Gy.Image: Comparatively low dose chest radiation (1-9 Gy)Image: Comparatively low dose chest radiation (1-9 Gy)	Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19	7 studies Level A	
There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy.	Risk after moderate dose (10-19 Gy) chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer.	7 studies Level A	
do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these comparatively low doses compared to doses >10 Gy.	Risk after moderate dose (10-19 Gy) chest radiation:There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer.Risk after low dose (1-9 Gy) chest radiation:	7 studies Level A 7 studies	
comparatively low doses compared to doses >10 Gy.	Risk after moderate dose (10-19 Gy) chest radiation:There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer.Risk after low dose (1-9 Gy) chest radiation:There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy)There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy)	7 studies Level A 7 studies Level B	
	Risk after moderate dose (10-19 Gy) chest radiation:There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with moderate dose chest radiation (10-19 Gy) have an increased risk of breast cancer.Risk after low dose (1-9 Gy) chest radiation:There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with low dose chest radiation (1-9 Gy) do not have a significantly increased breast cancer risk. It is known that there is a linear dose response, implicating lower excess risks at these	7 studies Level A 7 studies Level B	

*§ # Overlap in included patients

Breast cancer risk after 10-19 Gy chest radiation		
Childhood cancer survivors		
Veiga 2019	Per 10 Gy	OR 3.9 (2.5-6.5)
Ehrhardt 2019	10-<20 Gy vs. 0 Gy:	HR 2.4 (0.4-15.0)
	Survivors without pathogenic/likely p	athogenic mutations
	10-<20 Gy: vs. 0 Gy:	HR 8.0 (1.1-56.3)
Demoor-Goldschmidt 2017	10-20 Gy	19 (15.7%)
Moskowitz 2014	10-19 Gy	SIR 30.6 (18.4-50.7)
	2-20 Gy (median 14 Gy) whole lung	SIR 43.6 (27.1-70.1)
	radiation	
	whole lung radiation (2-20 Gy	Incidence rate ratio 3.4 (1.6-7.2)
	(median 14 Gy)) vs. mediastinal	
	radiation (3-54 Gy (median 30 Gy))	
	whole lung radiation (2-20 Gy	Incidence rate ratio 1.8 (0.9-3.7)
	(median 14 Gy)) vs. mantle radiation	
	(5-54 Gy (median 40 Gy))	
Lange 2014	1-12 Gy	SIR 46.8
	>12 Gy	SIR 18.9
Inskip 2009	11.4-29.99 Gy vs. 0 Gy	OR 7.1 (2.9-17.0)
Recalculated data	10-19.9 Gy vs. 0 Gy	OR 6.5 (2.3-18.5)
(unpublished)		
Guibout 2005	10-19.9 Gy vs. 0 Gy	RR 3.7 (0.6-24.2)
Taylor 2008	Wilms tumor survivors	SIR 5.8 (2.6-11.0)
		(4/8 breast cancers 12-15 Gy
		chest radiation)

Breast cancer risk after 1-9 Gy chest radiation		
Childhood cancer survivors		
Veiga 2019	<5 Gy vs. 0 Gy	OR 1.7 (1.0-3.0)
Ehrhardt 2019	>0-<10 Gy vs. 0 Gy	HR 0.7 (0.2-2.8)
	Survivors without pathogenic/likely	pathogenic mutations
	>0-<10 Gy vs. 0 Gy	HR 1.2 (0.3-5.0)
Demoor-Goldschmidt 2017	<10 Gy	17 (14.0%)
Little 2014	0.01-0.24 Gy vs. 0 Gy	OR 1.79 (0.55-∞)
	0.25-0.49 Gy vs. 0 Gy	OR 1.98 (0.61-∞)
	≥0.50 Gy vs. 0 Gy	OR 0.92 (0.24-∞)
Inskip 2009	1.3-11.39 Gy vs. 0 Gy	OR 1.9 (0.7-5.0)
Recalculated data	1.3-9.9 Gy vs. 0 Gy	OR 1.9 (0.7-5.4)
(unpublished)		
Guibout 2005	1-9.9 Gy vs. 0 Gy	RR 1.5 (0.3-8.1)
Hodgkin lymphoma survivors		
Krul 2017	3.0-7.9 Gy vs. 0-2.9 Gy	OR 1.33 (0.64-2.77)

2. What is the risk of breast cancer in childhood and young adult cancer survivors treated with TBI?		
Conclusion single studies		
Childhood cancer survivors		
In female childhood cancer survivors, TBI (median 12 (range 4-16) Gy) was significantly associated with an increased breast cancer risk as compared to the general population (SIR: 19.3 (7.3-51.5)).	Moskowitz 2014	
In female childhood cancer survivors, TBI (median 7.5 (range 1.6-12) Gy) was significantly associated with an increased breast cancer risk as	Teepen 2017	
compared to no TBI adjusted for chest radiation, ifosfamide and doxorubicin (HR: 10.6 (3.7-30.2)).		
In female childhood cancer survivors with breast cancer, 5 (4.1%) were treated with TBI.	Demoor-	
	Goldschmidt 2017	
Hematopoietic cell transplantation survivors (any age)		
In female hematopoietic cell transplant survivors (median age at transplant 28.1 (range 0.2-70.3) years), TBI (range 8-15.8 Gy) was significantly	Friedman 2008	
associated with an increased breast cancer risk as compared to no TBI (i.e. women treated with other cytoreduction regimens) (HR: 4.0 (1.6-10.3)).		
Note that this study has a methodological limitation which may have resulted in an overestimation. The comparison group is highly likely to have		
ovarian failure and so may not be an appropriate comparison population for breast cancer risk.		
Overall conclusion		
Risk after TBI:	3 studies	
There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with TBI have an increased risk of	Level B	
breast cancer as compared to no TBI.		
Risk after TBI <10 Gy:	1 study	
There is low quality evidence that female childhood, adolescent and young adult cancer survivors treated with a median TBI dose <10 Gy (median	Level C	
7.5 Gy, range 1.6-12 Gy) have an increased risk of breast cancer as compared to no TBI.		

Breast cancer risk after TBI			
Childhood cancer survivors			
Moskowitz 2014	TBI (median 12 Gy, range 4-16)	SIR 19.3 (7.3-51.5)	
Teepen 2017	TBI (median 7.5 Gy, range 1.6-12)	HR 10.6 (3.7-30.2)	
	vs. no TBI		
Demoor-Goldschmidt	ТВІ	5 (4.1%)	
2017			
HSCT survivors (any age)			
Friedman 2008	TBI (range 8-15.8 Gy) vs. no TBI	HR 4.0 (1.6-10.3)	

3. What is the risk of breast cancer in childhood and young adult cancer survivors treated with upper abdominal radiation exposing breast tissue?

Conclusion single studies	
Childhood cancer survivors	
In female childhood cancer survivors with breast cancer, 16 (13.2%) were treated with abdominal field radiation .	Demoor- Goldschmidt 2017
In female childhood cancer survivors treated with chest radiation, high abdominal field radiation (median 20 (range 4-40) Gy) was significantly associated with an increased breast cancer risk as compared to the general population (SIR: 10.8 (2.7-43.2)).	Moskowitz 2014
In female Wilms tumor survivors (15% treated with chest radiation), abdominal field radiation was significantly associated with an increased breast cancer risk as compared to the general population (SIR: 6.0 (2.9-11.0)).	Lange 2014
In female Wilms tumor survivors, whole abdominal radiation and flank radiation were associated with an increased breast cancer risk as compared to the general population (SIR: 7.2 and 5.8, respectively) (unclear if significant as 95% CI not reported). In female Wilms tumor survivors, higher flank radiation dose was non-significantly associated with an increased breast cancer risk as compared to lower flank radiation dose adjusted for chest radiation dose, dovorubicin and age at Wilms tumor diagnosis (HB: 1.09 (0.88-1.35))	
In Wilms tumor survivors there was a significantly increased breast cancer risk as compared to the general population (SIR: 5.8 (2.6-11.0)). It is unclear whether or not breast cancer was secondary to low dose chest radiation (10-19 Gy), the high abdominal fields, or a combination (likely the latter).	Taylor 2008
Overall conclusion	
Risk after upper abdominal radiation exposing breast tissue:	3 studies
There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors treated with upper abdominal radiation exposing breast tissue have an increased risk of breast cancer as compared to no high abdominal field radiation.	Level B

Breast cancer risk after upper abdominal radiation exposing breast tissue				
Childhood cancer surviv	Childhood cancer survivors			
Demoor-Goldschmidt	Abdominal field radiation	16 (13.2%)		
2017				
Moskowitz 2014	High abdominal field RT (4-40 Gy) + chest RT	SIR 10.8 (2.7-43.2)		
Lange 2014	Abdominal field RT (dose not mentioned)	SIR 6.0 (2.9-11.0)		
	Whole abdominal field RT	SIR 7.2		
	Flank RT	SIR 5.8		
	Flank RT dose	HR 1.09 (0.88-1.35)		
Taylor 2008	Wilms tumor survivors	SIR 5.8 (2.6-11.0)		
	Abdominal RT (20-35 Gy)	Unclear whether breast cancer was secondary to low		
		dose chest radiation, the high abdominal fields, or a		
		combination		

4. Does radiotherapy to volumes exposing the ovaries decrease the risk of breast cancer in CAYA cancer survivors treated with chest radiation and to what extent?

Conclusion single studies	
Childhood cancer survivors	
In female childhood cancer survivors, ovarian radiation was significantly associated with a decreased breast cancer risk adjusted for type of first cancer, calendar year of follow-up, family history of breast or ovarian cancer and chemotherapy (OR ovarian radiation any dose per 10 Gy chest radiation: 3.9 (2.5-6.9), OR ovarian radiation <1 Gy per 10 Gy chest radiation: 6.3 (3.6-12.0), OR ovarian radiation ≥1 Gy per 10 Gy chest radiation: 2.8 (1.8-5.2)).	Veiga 2019#
In female childhood cancer survivors, pelvic radiation was non-significantly associated with an increased breast cancer risk as compared to no pelvic radiation adjusted for age at primary childhood cancer diagnosis, pathogenic/likely pathogenic mutation, chest radiation, alkylating agents, and anthracyclines (HR 1.8 (0.9-3.9)).	Ehrhardt 2019
In female childhood cancer survivors treated with chest radiation, ovarian radiation was associated with a decreased breast cancer risk as compared to no ovarian radiation in univariate analysis (SIR ovaries irradiated: 8.8 (4.7-16.4); SIR ovaries not irradiated: 23.7 (20.6-27.3); (unclear if significant difference)).	Moskowitz 2014#
In female childhood cancer survivors treated with chest radiation, ovarian radiation was significantly associated with a decreased breast cancer risk as compared to no ovarian radiation adjusted for chest radiation field and dose, age at primary childhood cancer diagnosis and anthracyclines (HR: 0.35 (0.18-0.69)).	Moskowitz 2017#
In female childhood cancer survivors (74.5% treated with chest radiation), ≥5 Gy ovarian radiation was significantly associated with a decreased breast cancer risk as compared to <5 Gy ovarian radiation in univariate analysis (Excess odds ratio per Gy to the breasts <5 Gy vs. ≥5 Gy: 0.36 (0.14-0.93) vs. 0.06 (-0.06-0.27) (<i>P</i> = 0.002)).	Inskip 2009#
In female childhood Hodgkin lymphoma survivors treated with chest radiation, pelvic radiation was associated with a decreased breast cancer risk as compared to no pelvic radiation in univariate analysis (breast cancer in females treated with vs. without pelvic radiation: $1/98$ (1.0%) vs. 28/272 (10.3%); p = 0.0032).	Constine 2008
In female childhood cancer survivors, pelvic radiation was significantly associated with a decreased breast cancer risk as compared to no pelvic radiation adjusted for chest radiation (OR: 0.6 (0.4-0.9)).	Kenney 2004#
Hodgkin lymphoma survivors	
In female Hodgkin lymphoma survivors, pelvic radiation was significantly associated with a decreased breast cancer risk as compared to no pelvic radiation adjusted for chest radiation field and dose and alkylating agents (OR: 0.33 (0.13-0.84)).	Krul 2017*
In female Hodgkin lymphoma survivors, a ≥5 Gy pelvic radiation was associated with a decreased breast cancer risk as compared to no pelvic radiation in univariate analysis (SIR supradiaphragmatic radiation and ≥5 Gy pelvic radiation: 1.4 (0.5-4.4); SIR supradiaphragmatic radiation and alkylating agents and ≥5 Gy pelvic radiation: 6.0 (5.2-7.0); (unclear if significant difference)).	Swerdlow 2012
In female Hodgkin lymphoma survivors, \geq 5 Gy ovarian radiation or alkylating agents was non-significantly associated with a decreased breast cancer risk as compared to <5 Gy ovarian radiation or no alkylating agents in univariate analysis (SIR premenopausal women treated with alkylating agents or radiation to the ovaries \geq 5 Gy vs. no alkylating agents and radiation to the ovaries <5 Gy: 0.7 (0.3-1.5); SIR postmenopausal women treated with alkylating agents were treated with alkylating agents or radiation to the ovaries \geq 5 Gy vs. no alkylating agents and radiation to the ovaries <5 Gy: 0.7 (0.3-1.5); SIR postmenopausal women treated with alkylating agents or radiation to the ovaries \geq 5 Gy vs. no alkylating agents and radiation to the ovaries <5 Gy: 0.2 (0.1-1.3)).	Hill 2005
In female Hodgkin lymphoma survivors, pelvic radiation was non-significantly associated with a decreased breast cancer risk as compared to no pelvic radiation adjusted for chest radiation, alkylating agent chemotherapy, age at first radiation to the breast and time since first radiation to the breast (HR: 0.4 (0.1-1.4)).	de Bruin 2009*

In female Hodgkin lymphoma survivors, 3.0-4.9 Gy pelvic radiation was non-significantly associated with an increased breast cancer risk as	Travis 2003*	
compared to <3 Gy pelvic radiation adjusted for chest radiation dose and number of alkylating agent cycles (RR: 1.2 (0.3-3.9)).		
In female Hodgkin lymphoma survivors, 25 Gy pelvic radiation was non-significantly associated with a decreased breast cancer risk as compared to		
<3 Gy pelvic radiation adjusted for chest radiation dose and number of alkylating agent cycles (RR: 0.4 (0.1-1.1)).		
In female Hodgkin lymphoma survivors, ≥5 Gy ovarian radiation was non-significantly associated with a decreased breast cancer risk as compared	van Leeuwen 2003*	
to <5 Gy ovarian radiation adjusted for chest radiation dose and chemotherapy (RR: 0.13 (0.02-1.08)).		
Overall conclusion		
Risk after pelvic radiation in childhood cancer survivors treated at younger ages:		
There is moderate quality evidence that childhood cancer survivors treated with pelvic radiation at younger ages (<21 year) have a decreased risk of		
breast cancer after chest radiation compared to chest radiation but no pelvic radiation.		
Risk after pelvic radiation in Hodgkin lymphoma survivors treated at older ages:	6 studies from 3	
There is low quality evidence that Hodgkin lymphoma survivors treated with pelvic radiation at older ages (21-49 year) have a decreased risk of	cohorts	
breast cancer after chest radiation compared to chest radiation but no pelvic radiation.	Level C	

*Overlap in included patients

Breast cancer risk after radiotherapy to volumes exposing the ovaries		
Childhood cancer survivors		
Veiga 2019	Ovarian radiation any dose per 10	OR 3.9 (2.5-6.9)
	Gy chest radiation	
	Ovarian radiation <1 Gy per 10 Gy	OR 6.3 (3.6-12.0)
	chest radiation	
	Ovarian radiation ≥1 Gy per 10 Gy	OR 2.8 (1.8-5.2)
	chest radiation	<i>P</i> = 0.01
Ehrhardt 2019	Pelvic radiation yes vs. no	HR 1.8 (0.9-3.9)
Moskowitz 2014	Ovarian radiation	SIR 8.8 (4.7-16.4)
	No ovarian radiation	SIR 23.7 (20.6-27.3)
Moskowitz 2017	Ovarian radiation yes vs. no	HR 0.35 (0.18-0.69)
Inskip 2009	Ovarian radiation <5 Gy	Excess odds ratio per Gy to the
		breasts: 0.36 (0.14-0.93)
	Ovarian radiation ≥5 Gy	Excess odds ratio per Gy to the
		breasts: 0.06 (-0.06-0.27);
		<i>P</i> = 0.002
Constine 2008	Pelvic radiation yes vs. no	Breast cancer in 10.3% vs. 1.0%,
		<i>P</i> = 0.0032
Kenney 2004	Pelvic radiation yes vs. no	OR 0.6 (0.4-0.9)
Hodgkin lymphoma si	urvivors	
Krul 2017	Pelvic radiation yes vs. no	OR 0.33 (0.13-0.84)
Swerdlow 2012	Supradiaphragmatic radiation and	SIR 1.4 (0.5-4.4)
	≥5 Gy pelvic radiation	
	Supradiaphragmatic radiation and	SIR 3.8 (2.4-6.1)
	alkylating agents and ≥5 Gy pelvic	

	radiation	
	Supradiaphragmatic radiation	SIR 6.0 (5.2-7.0)
Hill 2005	≥5 Gy ovarian radiation or alkylating agents vs. <5 Gy ovarian	SIR premenopausal women 0.7 (0.3-1.5)
	radiation or no alkylating agents	SIR postmenopausal women
		0.2 (0.1-1.3)
de Bruin 2009	Pelvic radiation yes vs. no	HR 0.4 (0.1-1.4)
Travis 2003	Pelvic radiation 3.0-4.9 Gy vs. <3 Gy	RR 1.2 (0.3-3.9)
	Pelvic radiation ≥5 Gy vs. <3 Gy	RR 0.4 (0.1-1.1)
van Leeuwen 2003	Ovarian radiation ≥5 Gy vs. <5 Gy	RR 0.13 (0.02-1.08)

5. Does alkylating agent chemotherapy decrease the risk of breast cancer in CAYA cancer survivors treated with chest radiation and to what extent?

Conclusion single studies

Childhood cancer survivors	
In female childhood cancer survivors, <0 - 5,999 mg/m ² alkylating agent chemotherapy was non-significantly associated with a decreased breast	Ehrhardt 2019
cancer risk as compared to no alkylating agents adjusted for age at primary childhood cancer diagnosis, pathogenic/likely pathogenic mutation,	
chest radiation, pelvic radiation, and anthracyclines (HR 1.0 (0.4-2.6)).	
In female childhood cancer survivors, ≥6,000 mg/m ² alkylating agent chemotherapy was significantly associated with a decreased breast cancer	
risk as compared to no alkylating agents adjusted for age at primary childhood cancer diagnosis, pathogenic/likely pathogenic mutation, chest	
radiation, pelvic radiation, and anthracyclines (HR 0.4 (0.2-0.9)).	
In female childhood Hodgkin lymphoma survivors, alkylating agent score ≥2 was significantly associated with a decreased breast cancer risk as	Holmqvist 2019
compared to alkylating agent score 0 or 1 adjusted for chest radiation, age at primary childhood cancer diagnosis and anthracyclines (HR 0.5 (0.3-	
0.9)).	
In female childhood cancer survivors treated with chest radiation, alkylating agent chemotherapy was non-significantly associated with an	Moskowitz 2014#
increased breast cancer risk as compared to no alkylating agent chemotherapy adjusted for chest radiation dose (incidence rate ratio: 1.1 (0.8-	
1.4)).	
In female childhood cancer survivors treated with chest radiation, a cyclophosphamide equivalence dose of <14,000 mg/m2 was non-significantly	Moskowitz 2017#
associated with a decreased breast cancer risk as compared to no alkylating agents adjusted for chest radiation field and dose, age at primary	
childhood cancer diagnosis and anthracyclines (HR: 0.86 (0.61-1.20)).	
In female childhood cancer survivors treated with chest radiation, a cyclophosphamide equivalence dose of ≥14,000 mg/m2 was significantly	
associated with a decreased breast cancer risk as compared to no alkylating agents adjusted for chest radiation field and dose, age at primary	
childhood cancer diagnosis and anthracyclines (HR: 0.41 (0.21-0.79); HR <40yr at breast cancer diagnosis: 0.50 (0.23-1.08); HR +40 yr at breast	
cancer diagnosis: 0.26 (0.08-0.87)).	
In female childhood cancer survivors treated with chest radiation, 1-4,200, 4,201-7,036 mg/m ² and ≥7,037 mg/m ² procarbazine were non-	
significantly associated with a decreased breast cancer risk as compared to no procarbazine adjusted for chest radiation field and dose, age at	
primary childhood cancer diagnosis and anthracyclines (HR 1-4,200 mg/m²: 0.97 (0.61-1.54); HR 4,201-7,036 mg/m²: 1.03 (0.66-1.62); HR ≥7,037	
mg/m ² : 0.58 (0.31-1.11)).	
In female childhood cancer survivors (74.5% treated with chest radiation), alkylating agent chemotherapy was non-significantly associated with a	Inskip 2009#
decreased breast cancer risk as compared to no alkylating agent chemotherapy adjusted for chest radiation dose, ovarian radiation dose and	

primary cancer diagnosis (OR alkylating agents vs. no alkylating agen alkylating agent score 2 vs. 0: 1.40 (0.58-3.39); OR alkylating agent sc	ts: 0.93 (0.56-1.55); OR alkylating agent score 1 vs. 0: 0.67 (0.30-1.51); OR core 3 vs. 0: 1.15 (0.55-2.41)).	
In female childhood Hodgkin lymphoma survivors treated with supra associated with a decreased breast cancer risk as compared to no al	diaphragmatic radiation, alkylating agent chemotherapy was non-significantly kylating agent chemotherapy in univariate analysis (RR: 0.49 (0.18-1.33)).	Taylor 2007
In female childhood Hodgkin lymphoma survivors, 3-9 cycles alkylat breast cancer risk as compared to <3 cycles alkylating agent chemo (radiotherapy, chemotherapy, both) and recurrence of Hodgkin lymp	ing agent chemotherapy was non-significantly associated with a decreased cherapy adjusted for age at diagnosis, clinical stage, treatment groups shoma (RR: 0.62 (0.09-2.48)).	Bhatia 2003
Hodgkin lymphoma survivors		
In female Hodgkin lymphoma survivors, ≤4.2 g/m ² and >4.2 g/m ² pro risk as compared to chest radiation only adjusted for radiation dose (0.38-1.00))	bcarbazine were non-significantly associated with a decreased breast cancer to breast tumor location (OR \leq 4.2 g/m ² : 0.95 (0.53-1.70), OR >4.2 g/m ² : 0.62	Krul 2017*
In female Hodgkin lymphoma survivors, ≤4.2 g/m ² and 4.3-8.4 g/m ² risk as compared to no chemotherapy adjusted for chest radiation (I vs. 0: 0.71 (0.47-1.07)). In Hodgkin lymphoma survivors, >8.4 g/m ² procarbazine was signific chemotherapy adjusted for chest radiation (HR: 0.33 (0.16-0.68)).	procarbazine were non-significantly associated with a decreased breast cancer HR ≤4.2 g/m ² procarbazine vs. 0: 0.84 (0.52-1.36); HR 4.3-8.4 g/m ² procarbazine antly associated with a decreased breast cancer risk as compared to no	Schaapveld 2015*
In female Hodgkin lymphoma survivors treated with chest radiation, associated with a decreased breast cancer risk as compared to a low 0 alkylating agent cycles: 5.6 (4.8-6.6); SIR 1-5 alkylating agent cycles agent cycles: 4.1 (2.9-5.8); SIR ≥13 alkylating agent cycles: 1.4 (0.2-10 older patients aged ≥20 years at primary cancer treatment.	a higher number of alkylating agent chemotherapy cycles was significantly ver number of alkylating agent chemotherapy cycles in univariate analysis (SIR : 4.9 (3.5-7.1); SIR 6 alkylating agent cycles: 4.7 (3.6-6.1); SIR 7-12 alkylating 0.4) (<i>P</i> for trend 0.027). The decreased breast cancer risk was especially seen in	Swerdlow 2012
In female Hodgkin lymphoma survivors, ≤8.4 g/m ² procarbazine was no alkylating agent chemotherapy adjusted for chest radiation, pelv the breast (HR: 0.6 (0.3-0.9)). In female Hodgkin lymphoma survivors, >8.4 g/m ² procarbazine was to no alkylating agent chemotherapy adjusted for chest radiation, p to the breast (HR: 0.4 (0.1-1.3)).	s significantly associated with a decreased breast cancer risk as compared to ic radiation, age at first radiation to the breast and time since first radiation to non-significantly associated with a decreased breast cancer risk as compared elvic radiation, age at first radiation to the breast and time since first radiation	de Bruin 2009*
In female Hodgkin lymphoma survivors, alkylating agent chemother compared to \geq 40 Gy chest radiation (RR alkylating agents, no media: agents with 20-<40 Gy mediastinal radiation vs. \geq 40 Gy mediastinal r radiation vs. \geq 40 Gy mediastinal radiation: 0.47 (0.27-0.79)).	apy was significantly associated with a decreased breast cancer risk as stinal radiation vs. ≥40 Gy mediastinal radiation: 0.07 (0.02-0.36); RR alkylating adiation: 0.38 (0.19-0.77); RR alkylating agents with ≥40 Gy mediastinal	Travis 2005*
In female Hodgkin lymphoma survivors, alkylating agent chemother, significantly associated with a decreased breast cancer risk as comp radiation dose (RR alkylating agent chemotherapy vs. none: 0.6 (0.0- cycles vs. 0: 0.6 (0.3-1.1)). In female Hodgkin lymphoma survivors, ≥9 cycles alkylating agent ch as compared to no alkylating agent chemotherapy adjusted for ches	apy, 1-4 alkylating agent cycles and 5-8 alkylating agent cycles were non- ared to no alkylating agent chemotherapy adjusted for chest and ovarian 2.0); RR 1-4 alkylating agent cycles vs. 0: 0.7 (0.3-1.7); RR 5-8 alkylating agent memotherapy was significantly associated with a decreased breast cancer risk at and ovarian radiation dose (RR: 0.2 (0.1-0.7)).	Travis 2003*
In female Hodgkin lymphoma survivors, <6 cycles alkylating agent ch risk as compared to chest radiation only adjusted for chest radiation	nemotherapy was non-significantly associated with a decreased breast cancer dose and ovarian radiation dose (RR: 0.31 (0.09-1.05)).	van Leeuwen 2003*

In female Hodgkin lymphoma survivors, ≥6 cycles alkylating agent chemotherapy was significantly associated with a decreased breast cancer risk as compared to chest radiation only adjusted for chest radiation dose and ovarian radiation dose (RR: 0.33 (0.13-0.86)).

Overall conclusion		
Risk after alkylating agent chemotherapy in childhood cancer survivors treated with chest radiation at younger ages:	7 studies from 5	
There is low quality evidence that childhood cancer survivors treated with higher doses of alkylating agent chemotherapy and chest radiation at	cohorts	
younger ages (<21 year) have a decreased risk of breast cancer (especially for survivors with a breast cancer diagnosis at age ≥40 years) as		
compared to chest radiation but no alkylating agents.		
Risk after alkylating agent chemotherapy in Hodgkin lymphoma survivors treated with chest radiation at older ages:		
There is high quality evidence that Hodgkin lymphoma survivors treated with higher doses of alkylating agent chemotherapy and chest radiation at		
older ages (21-49 year) have a decreased risk of breast cancer as compared to chest radiation but no alkylating agents.		
This difference could be explained by an age-related sensitivity of the ovarian follicles to alkylating agent chemotherapy.		

*#Overlap in included patients

Breast cancer risk after alkylating agents			
Childhood cancer survivors			
Ehrhardt 2019	Alkylating agents <0 - 5,999 mg/m ²	HR 1.0 (0.4-2.6)	
	Alkylating agents ≥6,000 mg/m ²	HR 0.4 (0.2-0.9)	
Holmqvist 2019	Alkylating agent score ≥2 vs. 0 or 1	HR 0.5 (0.3-0.9)	
Moskowitz 2014	Alkylating agents yes vs. no	IRR 1.1 (0.8-1.4)	
Moskowitz 2017	Cyclophosphamide equivalence dose <14,000	HR 0.86 (0.61-1.20)	
	mg/m² vs. none		
	Cyclophosphamide equivalence dose ≥14,000	HR 0.41 (0.21-0.79)	
	mg/m ² vs. none		
	<40 yr at breast cancer diagnosis	HR 0.50 (0.23-1.08)	
	≥40 yr at breast cancer diagnosis	HR 0.26 (0.08-0.87)	
	Procarbazine 1-4,200 mg/m ² vs. none	HR 0.97 (0.61-1.54)	
	Procarbazine 4,201-7,036 mg/m ² vs. none	HR 1.03 (0.66-1.62)	
	Procarbazine ≥7,037 mg/m² vs. none	HR 0.58 (0.31-1.11)	
Taylor 2007	Alkylating agents yes vs. no	RR 0.49 (0.18-1.33)	
Inskip 2009	Alkylating agents yes vs. no	OR 0.93 (0.56-1.55)	
	Alkylating agent score 1 vs. 0	OR 0.67 (0.30-1.51)	
	Alkylating agent score 2 vs. 0	OR 1.40 (0.58-3.39)	
	Alkylating agent score 3 vs. 0	OR 1.15 (0.55-2.41)	
Bhatia 2003	Alkylating agents 3-9 cycles vs. <3 cycles	RR 0.62 (0.09-2.48)	
Hodgkin lymphoma survivors			
Krul 2017	Procarbazine ≤4.2 g/m ² vs. chest radiation only	OR 0.95 (0.53-1.70)	
	Procarbazine >4.2 g/m ² vs. chest radiation only	OR 0.62 (0.38-1.00)	
Schaapveld 2015	Procarbazine ≤4.2 g/m² vs. no chemotherapy	HR 0.84 (0.52-1.36)	
	Procarbazine ≤ 4.3-8.4 g/m ² vs. no chemotherapy	HR 0.71 (0.47-1.07)	
	Procarbazine >8.4 g/m ² vs. no chemotherapy	HR 0.33 (0.16-0.68)	
Swerdlow 2012	0 alkylating agent cycles	SIR 5.6 (4.8-6.6)	

	1-5 alkylating agent cycles	SIR 4.9 (3.5-7.1)
	6 alkylating agent cycles	SIR 4.7 (3.6-6.1)
	7-12 alkylating agent cycles	SIR 4.1 (2.9-5.8)
	≥13 alkylating agent cycles	SIR 1.4 (0.2-10.4); <i>P</i> trend 0.027
de Bruin 2009	Procarbazine ≤8.4 g/m² vs. no	HR 0.6 (0.3-0.9)
	Procarbazine >8.4 g/m ² vs. no	HR 0.4 (0.1-1.3)
Travis 2005	Alkylating agents, no mediastinal radiation vs. ≥40	RR 0.07 (0.02-0.36)
	Gy mediastinal radiation	
	Alkylating agents with 20-<40 Gy mediastinal	RR 0.38 (0.19-0.77)
	radiation vs. ≥40 Gy mediastinal radiation	
	Alkylating agents with ≥40 Gy mediastinal radiation	RR 0.47 (0.27-0.79)
	vs. ≥40 Gy mediastinal radiation	
Travis 2003	Alkylating agents yes vs. no	RR 0.6 (0.0-2.0)
	1-4 alkylating agent cycles vs. 0	RR 0.7 (0.3-1.7)
	5-8 alkylating agent cycles vs. 0	RR 0.6 (0.3-1.1)
	≥9 alkylating agent cycles vs. 0	RR 0.2 (0.1-0.7)
van Leeuwen 2003	<6 alkylating agent cycles vs. chest radiation only	RR 0.31 (0.09-1.05)
	≥6 alkylating agent cycles vs. chest radiation only	RR 0.33 (0.13-0.86)

6.1 What is the influence of age at menopause on the risk of breast cancer in CAYA cancer survivors?

Conclusion single studies

Childhood cancer survivors		
In female childhood cancer survivors treated with chest radiation, menopause at age <20 years, 20-39 years and ≥40 years were non-significantly		
associated with a decreased breast cancer risk as compared to still menstruating adjusted for chest radiation field and dose, age at primary		
childhood cancer diagnosis and anthracyclines (HR <20 yr: 0.60 (0.32-1.13), HR 20-39 yr: 0.82 (0.49-1.36), HR ≥40 yr: 0.87 (0.43-1.80)).		
In female childhood cancer survivors treated with chest radiation there was a strong significant trend of decreasing breast cancer risk with		
decreasing age at menopause (P trend = 0.014).		
Hodgkin lymphoma survivors		
In female Hodgkin lymphoma survivors, menopause at age <40 yr was significantly associated with a decreased breast cancer risk as compared to	Krul 2017*	
premenopausal at age ≥40 yr adjusted for chest radiation dose (OR: 0.43 (0.25-0.75)).		
In female Hodgkin lymphoma survivors, menopause at age 18-29 yr was significantly associated with a decreased breast cancer risk as compared		
to menopause at age ≥50 yr adjusted for chest radiation dose (OR: 0.13 (0.03-0.51)).		
In female Hodgkin lymphoma survivors, menopause at age 30-39 yr and 40-49 yr were non-significantly associated with a decreased breast cancer		
risk as compared to menopause at age ≥50 yr adjusted for chest radiation dose (OR 30-39 yr: 0.48 (0.20-1.15), OR 40-49 yr: 0.61 (0.27-1.36)).		
In female Hodgkin lymphoma survivors, menopause at age <40 yr was significantly associated with a decreased breast cancer risk as compared to		
menopause at age ≥40 yr adjusted for age and year of treatment, duration between treatment and questionnaire completion, calendar year of		
birth and chest radiation field (OR: 0.65 (0.44-0.94)).		
In female Hodgkin lymphoma survivors, menopause at age <41 years was significantly associated with a decreased breast cancer risk as compared	de Bruin 2009*	
to menopause at age ≥41 years adjusted for chest radiation (HR: 0.4 (0.2-0.8)).		
In female Hodgkin lymphoma survivors, menopause at age 19-30 years was significantly associated with a decreased breast cancer risk as	van Leeuwen 2003*	
compared to no menopause adjusted for chest radiation dose (RR: 0.06 (0.01-0.45)).		
In female Hodgkin lymphoma survivors, menopause at age 36-45 years was non-significantly associated with a decreased breast cancer risk as		
compared to no menopause adjusted for chest radiation dose (RR: 0.80 (0.26-2.40)).		
In female Hodgkin lymphoma survivors, older age at menopause was significantly associated with an increased breast cancer risk as compared to		
younger age at menopause adjusted for chest radiation dose (RR: 1.12 (1.02-1.23) (continuous variable)).		
Overall conclusion		
There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with chest radiation with a younger age	5 studies from 3	
at menonause have a decreased risk of breast cancer as compared to older age at menonause	cohorts	
at menopause have a decreased lisk of breast cancer as compared to older age at menopause.		

*Overlap in included patients

Breast cancer risk by age at menopause			
Childhood cancer survivors			
Moskowitz 2017	Age at menopause <20 yr vs. still menstruating	HR 0.60 (0.32-1.13)	
	Age at menopause 20-39 yr vs. still menstruating	HR 0.82 (0.49-1.36)	
	Age at menopause ≥40 yr vs. still menstruating	HR 0.87 (0.43-1.80)	
		<i>P</i> trend = 0.014	

Hodgkin lymphoma survivors		
Krul 2017	Menopause at age <40 yr vs. menopause ≥40 yr/premenopausal ≥40 yr	OR 0.43 (0.25-0.75)
	Age at menopause 18-29 yr vs. ≥50 yr	OR 0.13 (0.03-0.51)
	Age at menopause 30-39 yr vs. ≥50 yr	OR 0.48 (0.20-1.15)
	Age at menopause 40-49 yr vs. ≥50 yr	OR 0.61 (0.27-1.36)
Cooke 2013	Menopause at age < 40 yr vs. <u>></u> 40 yr	OR 0.65 (0.44-0.94)
de Bruin 2009	Menopause at age <41 yr vs. ≥41 yr	HR 0.4 (0.2-0.8)
van Leeuwen 2003	Menopause at age 19-30 yr vs. no menopause	RR 0.06 (0.01-0.45)
	Menopause at age 36-45 yr vs. no menopause	RR 0.80 (0.26-2.40)
	Age at menopause (continuous per year)	RR 1.12 (1.02-1.23)

6.2 What is the influence of duration of intact ovarian function after chest radiation on the risk of breast cancer in CAYA cancer survivors?

Conclusion single studies

Childhood cancer survivors		
In female childhood cancer survivors treated with chest radiation, ≥10 years of ovarian function after chest radiation was significantly associated		
with an increased breast cancer risk as compared to <10 years of ovarian function after chest radiation adjusted for chest radiation field and dose,		
age at primary childhood cancer diagnosis and anthracyclines (HR: 2.89 (1.56-5.35)).		
In female childhood cancer survivors treated with chest radiation, no menarche was significantly associated with a decreased breast cancer risk as		
compared to still menstruating adjusted for chest radiation field and dose, age at primary childhood cancer diagnosis and anthracyclines (HR: 0.12		
(0.02-0.89)).		
Hodgkin lymphoma survivors		
In female Hodgkin lymphoma survivors, 5-9 yr and 10-14 yr of post-radiation intact ovarian function were non-significantly associated with an	Krul 2017*	
increased breast cancer risk as compared to <5 yr of post-radiation intact ovarian function adjusted for chest radiation dose (OR 5-9 yr: 1.53 (0.63-		
3.72), OR 10-14 yr: 1.45 (0.62-3.37)).		
In female Hodgkin lymphoma survivors, 15-19 yr, 20-24 yr and ≥25 yr of post-radiation intact ovarian function were significantly associated with		
an increased breast cancer risk as compared to <5 yr of post-radiation intact ovarian function adjusted for chest radiation dose (OR 15-19 yr: 2.69		
(1.20-6.05), OR 20-24 yr: 4.42 (1.80-10.9), OR ≥25 yr: 3.82 (1.27-11.5)).		
In female Hodgkin lymphoma survivors, menopause within 5 yr of start of treatment was significantly associated with a decreased breast cancer	Cooke 2013	
risk as compared to no menopause adjusted for age and year of treatment, duration between treatment and questionnaire completion, calendar		
year of birth and chest radiation field (OR: 0.55 (0.35-0.85)).		
In female Hodgkin lymphoma survivors, there was a strong significant trend of increasing breast cancer risk with increasing premenonausal years		
after start of cancer treatment (OR 1-4 vs <1: 0.96 (0.34 -2.69) OR 5-9 vs <1: 1.02 (0.36 -2.87) OR 10-14 vs <1: 1.49 (0.63 -3.55) OR 15-24 vs <1:		
1.62 (0.76-3.44) OR >25 vs <1: 3.56 (1.50-8.45) P trend = 0.003)		
In female Hodgkin lymphoma survivors <10 yr of intact ovarian function was significantly associated with a decreased breast cancer risk as	de Bruin 2009*	
compared to 10-20 vr of intact ovarian function adjusted for chest radiation, premature menonause, BML smoking, pulliparity and oral	de Brain 2000	
contracentives (HR 0.3 (0.2-0.6))		
In female Hodgkin lymphoma survivors >20 yr of intact ovarian function was significantly associated with an increased breast cancer risk as		
compared to 10-20 vr of intact ovarian function adjusted for chest radiation, premature menopause BML smoking nulliparity and oral		
contraceptives (HR 5.3 (2.9-9.9)).		
In female Hodgkin lymphoma survivors, <5 yr and 5-14 yr from treatment to menopause were significantly associated with a decreased breast	van Leeuwen 2003*	
cancer risk as compared to being premenopausal adjusted for chest radiation dose (RR <5 vr: 0.15 (0.03-0.60), RR 5-14 vr: 0.24 (0.06-0.96)).		
In female Hodgkin lymphoma survivors, \geq 15 vr from treatment to menopause was non-significantly associated with a decreased breast cancer risk		
as compared to being premenopausal adjusted for chest radiation dose (RR 0.91 (0.26-3.18)).		
In female Hodgkin lymphoma survivors, increasing premenopausal years after cancer treatment was significantly associated with an increased		
breast cancer risk as compared to decreasing premenopausal years after cancer treatment adjusted for chest radiation dose (RR: 1.11 (1.00-1.22)		
(continuous variable)).		
Overall conclusion		
There is high quality evidence that female childhood, adolescent and young adult cancer survivors with a shorter duration of intact ovarian	5 studies from 3	
function after chest radiation have a decreased breast cancer risk as compared to females with a longer duration of intact ovarian function after	cohorts	

Breast cancer risk by duration of intact ovarian function after chest radiation			
Childhood cancer survivors			
Moskowitz 2017	Years of ovarian function after chest	HR 2.89 (1.56-5.35)	
	radiation ≥10 yr vs. <10 yr		
	No menarche vs. still menstruating	HR 0.12 (0.02-0.89)	
Hodgkin lymphoma sur	<u>vivors</u>		
Krul 2017	Duration of post-radiation intact ovarian	OR 1.53 (0.63-3.72)	
	function 5-9 yr vs. <5 yr		
	Duration of post-radiation intact ovarian	OR 1.45 (0.62-3.37)	
	function 10-14 yr vs. <5 yr		
	Duration of post-radiation intact ovarian	OR 2.69 (1.20-6.05)	
	function 15-19 yr vs. <5 yr		
	Duration of post-radiation intact ovarian	OR 4.42 (1.80-10.9)	
	function 20-24 yr vs. <5 yr		
	Duration of post-radiation intact ovarian	OR 3.82 (1.27-11.5)	
	function ≥25 yr vs. <5 yr		
Cooke 2013	Menopause within 5 yr of start of	OR 0.55 (0.35-0.85)	
	treatment vs. no menopause		
	Premenopausal yrs after start of treatment	OR 0.96 (0.34-2.69)	
	1-4 vs. <1		
	Premenopausal yrs after start of treatment	OR 1.02 (0.36-2.87)	
	5-9 vs. <1		
	Premenopausal yrs after start of treatment	OR 1.49 (0.63-3.55)	
	10-14 vs. <1		
	Premenopausal yrs after start of treatment	OR 1.62 (0.76-3.44)	
	15-24 vs. <1		
	Premenopausal yrs after start of treatment	OR 3.56 (1.50-8.45)	
	≥25 vs. <1	<i>P trend</i> = 0.003	
de Bruin 2009	Years of intact ovarian function <10 yr vs.	HR 0.3 (0.2-0.6)	
	10-20 yr		
	Years of intact ovarian function >20 yr vs.	HR 5.3 (2.9-9.9)	
	10-20 yr		
van Leeuwen 2003	Time from HL treatment to menopause ≥ 15	RR 0.91 (0.26-3.18)	
	yr vs. premenopausal		
	Time from HL treatment to menopause 5-	RR 0.24 (0.06-0.96)	
	14 yr vs. premenopausai		
	Time from HL treatment to menopause <5	кк 0.12 (0.03-0.60)	
	yi vs. premenopausal No. promonopausal urs ofter HI	DD 1 11 (1 00 133)	
	NO. premenopausal yrs after HL	KK 1.11 (1.00-122)	
	(continuous per year)		

6.3 What is the influence of time between menarche and chest radiation on the risk of breast cancer in CAYA cancer survivors?

Conclusion single studies		
Childhood cancer survivors		
In female childhood cancer survivors treated with chest radiation, radiotherapy given within 1 yr of menarche was significantly associated with an	Moskowitz 2017	
increased breast cancer risk as compared to >1 yr from menarche adjusted for chest radiation field and dose, age at primary childhood cancer		
diagnosis and anthracyclines (HR: 1.80 (1.19-2.72).		
In female childhood cancer survivors treated with chest radiation, radiotherapy given within 1 yr of menarche was significantly associated with an		
increased breast cancer risk as compared to ≥3 yr after menarche adjusted for chest radiation field and dose, age at primary childhood cancer		
diagnosis and anthracyclines (HR: 2.04 (1.18-3.53)).		
In female childhood cancer survivors treated with chest radiation, no menarche, chest radiation >3 yr before menarche, 1-3 yr before menarche,		
1-2 yr after menarche and 2-3 yr after menarche were non-significantly associated with an increased breast cancer risk as compared to chest		
radiation >3 yr after menarche adjusted for chest radiation field and dose, age at primary childhood cancer diagnosis and anthracyclines (HR no		
menarche: 0.16 (0.02-1.18), HR >3 yr before menarche: 1.31 (0.53-3.29), HR 1-3 yr before menarche: 1.08 (0.45-2.56), HR 1-2 yr after menarche:		
1.42 (0.78-2.57), HR 2-3 yr after menarche: 1.49 (0.89-2.47).		
Hodgkin lymphoma survivors		
In female Hodgkin lymphoma survivors, time between menarche and cancer treatment was non-significantly associated with an increased breast	Krul 2017	
cancer risk as compared to ≥15 yr between menarche and cancer treatment adjusted for radiation dose to breast tumor location, intact ovarian		
function, and age at menarche (OR 10-14 yr: 1.16 (0.48-2.85), OR 5-9 yr: 1.13 (0.43-3.01), OR 2-4 yr: 1.25 (0.38-4.15), OR <2 yr: 0.94 (0.16-5.71))		
In female Hodgkin lymphoma survivors, chest radiation given 2-5 yr before menarche, 0.5-2 yr before menarche, within 0.5 yr of menarche, 0.5-2	Cooke 2013	
yr after menarche and 2-5 yr after menarche were significantly associated with an increased breast cancer risk as compared to chest radiation		
given ≥10 yr after menarche adjusted for age and year of treatment, duration between treatment and questionnaire completion, calendar year of		
birth, chest radiation field and ovarian-toxic treatment (OR 2-5 yr before menarche: 4.08 (1.27-13.14), OR 0.5-2 yr before menarche: 4.90 (1.60-		
14.98), OR within 0.5 yr of menarche: 5.52 (1.97-5.46), OR 0.5-2 yr after menarche: 3.47 (1.40-8.58), OR 2-5 yr after menarche: 2.38 (1.43-3.97)).		
In female Hodgkin lymphoma survivors, chest radiation given ≥5 yr before menarche, 5-10 yr after menarche and no menarche were non-		
significantly associated with an increased breast cancer risk as compared to chest radiation given ≥10 yr after menarche adjusted for age and year		
of treatment, duration between treatment and questionnaire completion, calendar year of birth, chest radiation field and ovarian-toxic treatment		
(OR ≥5 yr before menarche: 0.94 (0.10-8.46), OR 5-10 yr after menarche: 1.33 (0.89-1.98), OR no menarche: 2.14 (0.20-22.56)).		
In female Hodgkin lymphoma survivors there was a strong significant trend of increasing breast cancer risk with decreasing time between		
menarche and chest radiation (P trend <0.001).		
Overall conclusion		
	2 studies	

There is moderate quality evidence that female childhood, adolescent and young adult cancer survivors who received chest radiation close to
menarche have an increased breast cancer risk as compared to chest radiation that was given a longer time from menarche.3 studiesLevel B

Breast cancer risk by time between menarche and chest radiation		
Childhood cancer su	rvivors	
Moskowitz 2017	Chest radiation <1 yr of menarche vs. ≥1 yr from menarche	HR 1.80 (1.19-2.72)

	No menarche vs. chest radiation >3 yr after menarche	HR 0.16 (0.02-1.18)
	Chest radiation >3 yr before menarche vs. >3 yr after menarche	HR 1.31 (0.53-3.29)
	Chest radiation 1-3 yr before menarche vs. >3 yr after menarche	HR 1.08 (0.45-2.56)
	Chest radiation ± 1 yr of menarche vs. >3 yr after menarche	HR 2.04 (1.18-3.53)
	Chest radiation 1-2 yr after menarche vs. >3 yr after menarche	HR 1.42 (0.78-2.57)
	, Chest radiation 2-3 yr after menarche vs. >3 yr after menarche	HR 1.49 (0.89-2.47)
Hodgkin lymphoma sur	vivors	
Krul 2017	Time between menarche and HL treatment 10-14 yr vs. ≥15 yr	OR 1.16 (0.48-2.85)
	Time between menarche and HL treatment	OR 1.13 (0.43-3.01)
	Time between menarche and HL treatment 2-4 yr ys >15 yr	OR 1.25 (0.38-4.15)
	Time between menarche and HL treatment <2 yr before or <2 yr after HL treatment vs. >15 yr:	OR 0.94 (0.16-5.71)
Cooke 2013	Chest radiation ≥ 5 yr before menarche vs. ≥ 10 yr after menarche	OR 0.94 (0.10-8.46)
	Chest radiation 2-5 yr before menarche vs. ≥10 yr after menarche	OR 4.08 (1.27-13.14)
	Chest radiation 0.5-2 yr before menarche vs. ≥10 yr after menarche	OR 4.90 (1.60-14.98)
	Chest radiation within 0.5 yr of menarche vs. ≥10 yr after menarche	OR 5.52 (1.97-5.46)
	Chest radiation 0.5-2 yr after menarche vs. ≥10 yr after menarche	OR 3.47 (1.40-8.58)
	Chest radiation 2-5 yr after menarche vs. \geq 10 yr after menarche	OR 2.38 (1.43-3.97)
	Chest radiation 5-10 yr after menarche vs. ≥10 yr after menarche	OR 1.33 (0.89-1.98)
	No menarche vs. chest radiation ≥10 yr after menarche	OR 2.14 (0.20-22.56) <i>P trend</i> < 0.001

7. What is the influence of treatment of early menopause on the risk of breast cancer in CAYA cancer survivors?

Conclusion single studies

Childhood cancer survivors		
In female childhood cancer survivors treated with chest radiation, combined estrogen and progestin use was non-significantly associated with an		
increased breast cancer risk as compared to none adjusted for chest radiation field and dose, age at primary childhood cancer diagnosis,		
anthracyclines and age at menopause (HR: 1.54 (0.70-3.40)).		
In female childhood cancer survivors treated with chest radiation, ≥10 years of gonadal hormone exposure was non-significantly associated with		
an increased breast cancer risk as compared to <10 years of gonadal hormone exposure adjusted for chest radiation field and dose, age at primary		
childhood cancer diagnosis and anthracyclines (HR: 1.59 (0.88-2.90)).		
Hodgkin lymphoma survivors		
In female Hodgkin lymphoma survivors, hormone replacement therapy was non-significantly associated with a decreased breast cancer risk as	Krul 2017*	
compared to none adjusted for chest radiation dose and duration of post-radiation intact ovarian function (OR yes vs. no: 0.82 (0.48-1.39), OR <5 yr		
hormone replacement therapy vs. none: 0.93 (0.49-1.77), OR 5-9 yr hormone replacement therapy vs. none: 0.91 (0.34-2.46), OR ≥10 yr hormone		
replacement therapy vs. none: 0.84 (0.30-2.32)).		
In female Hodgkin lymphoma survivors, ≥3 years hormonal replacement therapy was non-significantly associated with an increased breast cancer	van Leeuwen 2003*	
risk as compared to <3 years hormonal replacement therapy or none adjusted for chest radiation dose (RR: 2.16 (0.36-12.9)).		
Overall conclusion		
There is moderate quality evidence that there is no significant effect of treatment of early menopause on the risk of breast cancer in female childhood, adolescent and young adult cancer survivors.		

*Overlap in included patients

Breast cancer risk by treatment of early menopasue			
Childhood cancer su	rvivors		
Moskowitz 2017	Combined estrogen and progestin use	HR 1.54 (0.70-3.40)	
	Gonadal hormone exposure ≥10 yr vs. <10 yr	HR 1.59 (0.88-2.90)	
Hodgkin lymphoma	survivors		
Krul 2017	Hormone replacement therapy yes vs. no	OR 0.82 (0.48-1.39)	
	<5 yr hormone replacement therapy vs. none	OR 0.93 (0.49-1.77)	
	5-9 yr hormone replacement therapy vs. none	OR 0.91 (0.34-2.46)	
	≥10 yr hormone replacement therapy vs. none	OR 0.84 (0.30-2.32)	
van Leeuwen 2003	Hormonal replacement therapy ≥3 yr vs. <3 yr or none	RR 2.16 (0.36-12.9)	

8.1 Do other certain types of chemotherapy affect the risk of breast cancer in CAYA cancer survivors treated without chest radiation?

Conclusion single studies

Anthracyclines	
In female childhood cancer survivors, increasing doses of anthracyclines were significantly associated with an increased breast cancer risk adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR per 100 mg/m ² : 1.23 (1.09-1.39)).	Veiga 2019*
In female childhood cancer survivors, 1-223 mg/m², 224-343 mg/m² and 224-343 mg/m² anthracyclines were significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR 1-223 mg/m ² : 2.3 (1.3-4.2), OR 224-343 mg/m ² : 2.4 (1.3-4.6), OR >455 mg/m ² : 3.8 (1.8-8.2)). In female childhood cancer survivors, 344-455 mg/m² anthracyclines was non-significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR 1.5 (0.7-3.2)).	
In female childhood cancer survivors, >0-279 mg/m ² and >424 mg/m ² doxorubicin were significantly associated with an increased breast cancer risk as compared to no doxorubicin adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR >0-279 mg/m ² : 2.0 (1.1-3.5), OR >424 mg/m ² : 2.7 (1.3-5.8)). In female childhood cancer survivors, 279-<424 mg/m ² doxorubicin was non-significantly associated with an increased breast cancer risk as compared to no doxorubicin adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR 279-<424 mg/m ² : 1.8 (0.9-3.6)).	
In female childhood cancer survivors, daunorubicin was non-significantly associated with an increased breast cancer risk as compared to no daunorubicin adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR 1.1 (0.5-2.6)).	
In female childhood leukemia, CNS tumor and non-Ewing sarcoma survivors (Li-Fraumeni syndrome associated childhood cancer types) increasing doses of anthracyclines were significantly associated with an increased breast cancer risk adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR per 100 mg/m ² : 1.31 (1.1-1.5)). In female survivors of non-Li-Fraumeni syndrome associated childhood cancer types increasing doses of anthracyclines were significantly associated with an increased breast cancer risk adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR per 100 mg/m ² : 1.16 (1.0-1.4)).	
In female childhood cancer survivors, there is a significant additive interaction between chest radiation and anthracyclines adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and alkylating agents (OR: no anthracyclines and 1-<10 Gy chest radiation vs. 0-<1 Gy chest radiation: 2.1 (0.9-4.8), OR no anthracyclines and \geq 10 Gy chest radiation vs. 0-<1 Gy chest radiation vs. 0-<1 Gy chest radiation: 9.6 (4.4-20.7), OR anthracyclines and 1-<10 Gy chest radiation vs. 0-<1 Gy chest radiation	

Gy chest radiation vs. 0-<1 Gy chest radiation: 19.1 (7.6-48.0)).

In female childhood cancer survivors treated without chest radiation, increasing doses of anthracyclines were significantly associated with an increased breast cancer risk adjusted for age at primary cancer diagnosis, treatment era, history of splenectomy, cyclophosphamide equivalent dose, epipodophyllotoxins and platinum agents (RR per 100 mg/m ² RR 1.3 (1.2-1.6)).	Turcotte 2019*
In female childhood cancer survivors treated without chest radiation, 0-100 mg/m² and 101-300 mg/m² anthracyclines were non-significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for age at primary cancer diagnosis, treatment era, history of splenectomy, cyclophosphamide equivalent dose, epipodophyllotoxins and platinum agents (RR 0-100 mg/m ² : 0.9 (0.1-9.1), RR 101-300 mg/m ² : 1.8 (0.6-6.0)).	
In female childhood cancer survivors treated without chest radiation, 301-600 mg/m² and 600 mg/m² anthracyclines were significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for age at primary cancer diagnosis, treatment era, history of splenectomy, cyclophosphamide equivalent dose, epipodophyllotoxins and platinum agents (RR 301-600 mg/m ² : 3.7 (1.3-10.8), RR >600 mg/m ² : 8.1 (1.2-56.0)).	
In female childhood cancer survivors treated without ≥10 Gy chest radiation and without pathogenic/likely pathogenic mutations, 1-249 mg/m² anthracyclines was non-significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for age at primary childhood cancer diagnosis, alkylating agents and pelvic radiation (HR 2.1 (0.2-27.0)). In female childhood cancer survivors treated without ≥10 Gy chest radiation and without pathogenic/likely pathogenic mutations, ≥250 mg/m ² anthracyclines was significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for age at primary childhood cancer diagnosis, alkylating agents and pelvic radiation (HR 16.9 (2.2-126.6)).	Ehrhardt 2019
In female childhood cancer survivors, 1-249 mg/m² anthracyclines was significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for age at primary childhood cancer diagnosis, pathogenic/likely pathogenic mutation, chest radiation, alkylating agents and pelvic radiation (HR 2.6 (1.1-6.2)). In female childhood cancer survivors, ≥250 mg/m² anthracyclines was significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for age at primary childhood cancer diagnosis, pathogenic/likely pathogenic mutation, chest radiation, alkylating agents and pelvic radiation (HR 13.4 (5.5-13.4)).	

	In female childhood cancer survivors treated without chest radiation, ≤270 mg/m ² doxorubicin was non-significantly associated with a decreased breast cancer risk as compared to no doxorubicin adjusted for ifosfamide (HR: 1.3 (0.3-6.1)). In female childhood cancer survivors treated without chest radiation, 271-443 mg/m ² and >443 mg/m ² doxorubicin were significantly associated with an increased breast cancer risk as compared to no doxorubicin adjusted for ifosfamide (HR 271-443 mg/m ² : 5.6 (1.9-16.2), HR >443 mg/m ² : 9.9 (4.2-23.8)). In female childhood cancer survivors treated without chest radiation, there was a strong significant trend of increasing breast cancer risk with increasing doxorubicin dose (P for trend 0.002).	Teepen 2017
	In female childhood leukemia, CNS tumor and non-Ewing sarcoma survivors (Li-Fraumeni syndrome associated childhood cancer types) (7.6% treated with chest radiation), ≤270 mg/m ² doxorubicin was non-significantly associated with a decreased breast cancer risk as compared to no doxorubicin adjusted for chest radiation, TBI and ifosfamide (HR: 0.6 (0.1-3.2)). In female childhood leukemia, CNS tumor and non-Ewing sarcoma survivors (Li-Fraumeni syndrome associated childhood cancer types) (7.6% treated with chest radiation), 271-443 mg/m ² and >443 mg/m ² doxorubicin were significantly associated with an increased breast cancer risk as compared to no doxorubicin adjusted for chest radiation, TBI and ifosfamide (HR 271-443 mg/m ² : 9.1 (2.5-32.8), HR >443 mg/m ² : 14.8 (5.1-43.2)). In female childhood leukemia, CNS tumor and non-Ewing sarcoma survivors (Li-Fraumeni syndrome associated childhood cancer types) (7.6% treated with chest radiation), there was a strong significant trend of increasing breast cancer risk with increasing doxorubicin dose (P for trend <0.001).	
	In female survivors of non-Li-Fraumeni syndrome associated childhood cancer types (13.4% treated with chest radiation), \leq 270 mg/m ² , 271-443 mg/m ² and >443 mg/m ² doxorubicin were non-significantly associated with an increased breast cancer risk as compared to no doxorubicin adjusted for chest radiation, TBI and ifosfamide (HR \leq 270 mg/m ² : 1.9 (0.6-6.2), HR 271-443 mg/m ² : 1.1 (0.2-4.9), HR >443 mg/m ² : 2.4 (0.7-8.4)). In female survivors of non-Li-Fraumeni syndrome associated childhood cancer types (13.4% treated with chest radiation), there was no significant trend of increasing breast cancer risk with increasing doxorubicin dose (P for trend=0.94)).	
	In female childhood cancer survivors treated without chest radiation, 1-249 mg/m ² anthracyclines was non-significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for cyclophosphamide, age at primary cancer diagnosis, ethnicity and current age (Relative SIR: 2.6 (0.8-8.7)). In female childhood cancer survivors treated without chest radiation, ≥250 mg/m ² anthracyclines was significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for cyclophosphamide, age at primary cancer diagnosis, ethnicity and current age (Relative SIR: 3.8 (1.7-8.3)). In female childhood cancer survivors treated without chest radiation there was a strong significant trend of increasing breast cancer risk with increasing anthracycline dose (P for trend =0.004).	Henderson 2016*
	In female childhood leukemia and sarcoma survivors treated without chest radiation, 1-249 mg/m² and ≥250 mg/m² anthracyclines were significantly associated with an increased breast cancer risk as compared to no anthracyclines adjusted for cyclophosphamide, age at primary cancer diagnosis, ethnicity and current age (Relative SIR 1-249 mg/m ² : 4.3 (1.1-16.6), Relative SIR ≥250 mg/m ² : 5.1 (1.9-13.7)). In female childhood leukemia and sarcoma survivors treated without chest radiation there was a strong significant trend of increasing breast cancer risk with increasing anthracycline dose (P for trend =0.005).	
l	Overall conclusion	
	Risk after anthracyclines without chest radiation: There is high quality evidence that female childhood, adolescent and young adult cancer survivors treated with anthracyclines have an increased risk of breast cancer in a dose-response relationship. However, the threshold dose for survivors at low, moderate and high risk is difficult to	5 studies from 3 cohorts Level A

determine.	
There is moderate quality evidence that survivors of Li-Fraumeni syndrome-associated childhood cancer types (leukemia, CNS tumor and non-Ewing	3 studies from 2
sarcoma) treated without chest radiation have an increased breast cancer risk as compared to no anthracyclines and no chest radiation.	
	Level B

* Overlap in included patients

Study	Effect estimate per 100 mg/m ²
<u>Veiga 2019</u>	
CCSS case-control study	OR 1.23 (1.09-1.39)
Non-LFS-associated	OR 1.16 (1.0-1.4)
LFS-associated ¹	OR 1.31 (1.1-1.5)
Turcotte 2019	
CCSS cohort study	RR 1.3 (1.2-1.6)
Treated without chest RT	

¹ Childhood leukemia, CNS tumor and non-Ewing sarcoma survivors

Study	Low risk	Medium risk	High risk
	Estimate RR <2	Estimate RR 2-4	Estimate RR ≥4
Veiga 2019 ¹	344-455 mg/m ² vs. 0: OR 1.5 (0.7-3.2)	1-223 mg/m ² vs. 0: OR 2.3 (1.3-4.2)	
CCSS case-control study		224-343 mg/m ² vs. 0: OR 2.4 (1.3-4.6)	
		>455 mg/m ² vs. 0: OR 3.8 (1.8-8.2)	
	Doxorubicin	Doxorubicin	
	279-<424 mg/m ² vs. 0: OR 1.8 (0.9-3.6)	>0-279 mg/m ² vs. 0: OR 2.0 (1.1-3.5)	
		≥424 mg/m² vs. 0: OR 2.7 (1.3-5.8)	
Turcotte 2019	0-100 mg/m ² vs. 0: RR 0.9 (0.1-9.1)	301-600 mg/m ² vs. 0: RR 3.7 (1.3-10.8)	>600 mg/m ² vs. 0: RR 8.1 (1.2-56.0)
CCSS cohort study	101-300 mg/m ² vs. 0: RR 1.8 (0.6-6.0)		
Treated without chest RT			
Ehrhardt 2019		1-249 mg/m ² vs. 0: HR 2.6 (1.1-6.2)	≥250 mg/m ² vs. 0: HR 13.4 (5.5-13.4)
StJudeLIFE cohort study			
Treated without ≥10 Gy		1-249 mg/m ² vs. 0: HR 2.1 (0.2-27.0)	≥250 mg/m ² vs. 0: HR 16.9 (2.2-126.6)
chest RT, without (likely)			
pathogenic mutations			
Teepen 2017	Doxorubicin		Doxorubicin
DCOG-LATER cohort study	≤270 mg/m ² vs. 0: HR 1.3 (0.3-6.1)		271-443 mg/m ² vs. 0: HR 5.6 (1.9-16.2)
			>443 mg/m ² vs. 0: HR 9.9 (4.2-23.8)
Treated without chest RT	Doxorubicin	Doxorubicin	
Non-LFS-associated	≤270 mg/m ² vs. 0: HR 1.9 (0.6-6.2)	>443 mg/m ² vs. 0: HR 2.4 (0.7-8.4)	
(13.4% chest RT)	271-443 mg/m ² vs. 0: HR 1.1 (0.2-4.9)		
LFS-associated ²	Doxorubicin		Doxorubicin
(7.6% chest RT)	≤270 mg/m ² vs. 0: HR 0.6 (0.1-3.2)		271-443 mg/m ² vs. 0: HR 9.1 (2.5-32.8)
			>443 mg/m ² vs. 0: HR 14.8 (5.1-43.2)

Henderson 2016	1-249 mg/m ² vs. 0: Relative SIR 2.6 (0.8-8.7)	
CCSS cohort study	≥250 mg/m² vs. 0: Relative SIR 3.8 (1.7-8.3)	
Treated without chest RT		
LFS-associated ³		1-249 mg/m ² vs. 0: Relative SIR 4.3 (1.1-16.6)
Treated without chest RT		≥250 mg/m ² vs. 0: Relative SIR 5.1 (1.9-13.7)

¹ Daunorubicin yes vs. no: 1.1 (0.5-2.6); Additive interaction between radiotherapy and anthracyclines (p=0.04)

² Childhood leukemia, CNS tumor and non-Ewing sarcoma survivors

³ Childhood leukemia and sarcoma survivors

8.2 Do other certain types of chemotherapy affect the risk of breast cancer in CAYA cancer survivors treated without chest radiation?

Conclusion single studies

Alkylating agents	
In female childhood cancer survivors, alkylating agents was non-significantly associated with breast cancer risk as compared to no alkylating	Veiga 2019
agents adjusted for type of first cancer, categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer	
and anthracyclines (OR 1.1 (0.8-1.5)).	
In female childhood cancer survivors, a cyclophosphamide equivalent dose of >0-<5,201 mg/m ² , 5,201-<9,435 mg/m ² , 9,435-<13,955 mg/m ² , and	
≥13,955 mg/m ² were non-significantly associated with breast cancer risk as compared to no alkylating agents adjusted for type of first cancer,	
categories of breast radiation dose, calendar year of follow-up, family history of breast or ovarian cancer and anthracyclines (OR >0-<5,201 mg/m ² :	
0.8 (0.4-1.4), OR 5,201-<9,435 mg/m²: 1.4 (0.8-2.3), OR 9,435-<13,955 mg/m²: 1.1 (0.7-1.9), OR ≥13,955 mg/m²: 0.9 (0.5-1.5)).	
In female childhood cancer survivors treated without chest radiation, a cyclophosphamide equivalent dose of 1-2,000 mg/m ² , 2,001-4,000 mg/m ² ,	Turcotte 2019
4,001-7,000 mg/m ² , 7,001-10,000 mg/m ² and >10,000 mg/m ² were non-significantly associated with breast cancer risk as compared to no	
alkylating agents adjusted for age at primary cancer diagnosis, treatment era, history of splenectomy, anthracyclines, epipodophyllotoxins and	
platinum agents (RR 1-2,000 mg/m ² : 0.8 (0.1-6.9), RR 2,001-4,000 mg/m ² : 0.5 (0.1-3.8), RR 4,001-7,000 mg/m ² : 2.6 (0.9-7.4), RR 7,001-10,000	
mg/m ² : 1.5 (0.5-5.3), RR >10,000 mg/m ² : 1.4 (0.5-4.3)).	
In female childhood cancer survivors treated without chest radiation, ifosfamide was non-significantly associated with an increased breast cancer	Teepen 2017
risk as compared to no ifosfamide adjusted for doxorubicin (HR: 2.3 (0.6-8.0)).	
In female childhood cancer survivors (6.4% treated with chest radiation) a cyclophosphamide equivalent dose of <6.000 mg/m ² 6.000-17.999	
mg/m ² and >18 000 mg/m ² were non-significantly associated with an increased breast cancer risk as compared to no alkylating agents adjusted	
for chest radiation TBI and anthracyclines (HR < 6 000 mg/m ² , 2 0 (0 9-4 8); HR 6 000-17 999 mg/m ² , 1 7 (0 7-3 9); HR >18 000 mg/m ² , 1 0 (0 2-4 5);	
P trend = 0.99	
In female childhood cancer survivors treated without chest radiation cyclophosphamide equivalent doses of 1-5.999 mg/m² and 6.000-17.999	Henderson 2016
mg/m ² were non-significantly associated with a decreased breast cancer risk as compared to no alkylating agents adjusted for anthracyclines, age	
at primary cancer diagnosis ethnicity and current age (Relative SIR 1-5 999 mg/m ² \cdot 0.6 (0.2-2.0); Relative SIR 6 000-17 999 mg/m ² \cdot 1.6 (0.7-3.5))	
In female childhood cancer survivors treated without chest radiation a cyclonhosnhamide equivalent dose of >18 000 mg/m ² was significantly	
associated with an increased breast cancer risk as compared to no alkylating agents adjusted for anthracyclines, age at primary cancer diagnosis	
ethnicity and current age (Relative SIR: 3.0 (1.2-7.7))	
In female childhood cancer survivors treated without chest radiation there was a significant trend of increasing breast cancer risk with increasing	
cvclonhosphamide equivalent dose (P for trend = 0.044)	
In female childhood leukemia and sarcoma survivors treated without chest radiation, cyclophosphamide equivalent doses of 1-5,999 mg/m ² and	
6,000-17,999 mg/m ² were non-significantly associated with a decreased breast cancer risk as compared to no alkylating agents adjusted for	
anthracyclines, age at primary cancer diagnosis, ethnicity and current age (Relative SIR 1-5,999 mg/m ² : 0.7 (0.2-2.3); Relative SIR 6,000-17,999	
mg/m²: 1.9 (0.8-4.5)).	
In female childhood leukemia and sarcoma survivors treated without chest radiation, a cyclophosphamide equivalent dose of ≥18,000 mg/m ² was	
significantly associated with an increased breast cancer risk as compared to no alkylating agents adjusted for anthracyclines, age at primary cancer	
diagnosis, ethnicity and current age (Relative SIR: 3.4 (1.2-9.7)).	
In female childhood leukemia and sarcoma survivors treated without chest radiation there was a significant trend of increasing breast cancer risk	

with increasing cyclophosphamide equivalent dose (P for trend =0.045).	
In female childhood cancer survivors (20.7% treated with chest radiation), alkylating agent chemotherapy was non-significantly associated with a	
decreased breast cancer risk as compared to no alkylating agent chemotherapy adjusted for chest radiation (OR alkylating agent score 1-2 vs. 0:	
0.8 (0.4-1.6); OR alkylating agent score 3-4 vs. 0: 0.8 (0.4-1.4); OR alkylating agent score ≥5 vs. 0: 1.11 (0.6-2.0) (<i>P</i> for trend >0.2)).	
Overall conclusion	
Risk after alkylating agents without or independent of chest radiation:	
There is low quality evidence that female childhood, adolescent and young adult cancer survivors treated with higher doses of alkylating agents	
(≥18,000 mg/m ²) without chest radiation have an increased risk of breast cancer as compared to no alkylating agents and no chest radiation.	

Breast cancer risk	after alkylating agents in patients treated	without chest radiation		
Childhood cancer s	survivors			
Veiga 2019	Alkylating agents yes vs. no:	OR 1.1 (0.8-1.5)		
	CED >0- <5,201 mg/m ² vs. none:	OR 0.8 (0.4-1.4)		
	CED 5,201 -<9,435 mg/m ² vs. none:	OR 1.4 (0.8-2.3)		
	CED 9,435- <13,955 mg/m ² vs. none:	OR 1.1 (0.7-1.9)		
	CED ≥13,955 mg/m ² vs. none:	OR 0.9 (0.5-1.5)		
Turcotte 2019	CED 1-2,000 mg/m ² vs. none:	RR 0.8 (0.1-6.9)		
	CED 2,001-4,000 mg/m ² vs. none:	RR 0.5 (0.1-3.8)		
	CED 4,001-7,000 mg/m ² vs. none:	RR 2.6 (0.9-7.4)		
	CED 7,001-10,000 mg/m ² vs. none:	RR 1.5 (0.5-5.3)		
	CED >10,000 mg/m ² vs. none	RR 1.4 (0.5-4.3)		
Teepen 2017	out chest radiation			
	Ifosfamide yes vs. no	HR 2.3 (0.6-8.0)		
	All childhood cancer survivors (6.4% treated with chest rad			
	CED <6,000 mg/m ² vs. none	HR 2.0 (0.9-4.8)		
	CED 6,000-17,999 mg/m ² vs. none	HR 1.7 (0.7-3.9)		
	CED ≥18,000 mg/m ² vs. none	HR 1.0 (0.2-4.5)		
		<i>P trend</i> = 0.99		
Henderson 2016	All childhood cancer survivors treated wi	ithout chest radiation		
	CED 1-5,999 mg/m ² vs. no	Relative SIR 0.6 (0.2-2.0)		
	CED 6,000-17,999 mg/m ² vs. no	Relative SIR 1.6 (0.7-3.5)		
	CED ≥18,000 mg/m ² vs. no	Relative SIR 3.0 (1.2-7.7);		
		<i>P</i> trend = 0.044		
	Childhood leukemia and sarcoma survivors treated without chest radiation			
	CED 1-5,999 mg/m ² vs. no	Relative SIR 0.7 (0.2-2.3)		
	CED 6,000-17,999 mg/m ² vs. no	Relative SIR: 1.9 (0.8-4.5)		
	CED ≥18,000 mg/m² vs. no	Relative SIR: 3.4 (1.2-9.7)		
		<i>P</i> trend = 0.045		
Kenney 2004	All childhood cancer (20.7% treated with chest radiation)			
	Alkylating agent score 1-2 vs. 0	OR 0.8 (0.4-1.6)		
	Alkylating agent score 3-4 vs. 0	OR 0.8 (0.4-1.4)		
	Alkylating agent score ≥5 vs. 0	OR 1.11 (0.6-2.0)		

At what age should continuation of intensive breast cancer surveillance be stopped?

9 What is the risk of breast cancer in childhood and young adult cancer survivors treated with chest radiation with an attained age >50 years?			
Conclusion single studies			
Childhood cancer survivors			
In female childhood cancer survivors treated with chest radiation ≥10 Gy, there is an increased breast cancer risk by age 50 years (cumulative incidence childhood cancer survivors: 41%).	Ehrhardt 2019		
In female childhood Hodgkin lymphoma survivors treated with chest radiation, there is an increased breast cancer risk by age 50 years (cumulative incidence childhood cancer survivors: 23.5% (16.9-30.7)).	Holmqvist 2019		
In female childhood cancer survivors treated with chest radiation (81% treated with ≥20 Gy), there is an increased breast cancer risk by age 50 years (cumulative incidence childhood cancer survivors: 30% (25-34); cumulative incidence Hodgkin lymphoma survivors: 35% (29-40); cumulative incidence BRCA1 mutation carriers: 31% (15-48); cumulative incidence BRCA2 mutation carriers: 10% (1-23); cumulative incidence continues to increase by age 55 years (no effect measures reported).	Moskowitz 2014		
Hodgkin lymphoma survivors			
In female Hodgkin lymphoma survivors treated with chest radiation (on average, 36 Gy for mantle and 31 to 33 Gy for mediastinum, axilla, and neck/clavicle), there is a significantly increased breast cancer risk by age ≥50 years as compared to the general population (SIR 50-59 year: 3.8 (3.1-4.7); SIR ≥60 year: 2.7 (1.7-4.3)).	Swerdlow 2012		
In female Hodgkin lymphoma survivors treated with and without chest radiation (on average, 40 Gy (range 36 to 44 Gy), there is a significantly increased breast cancer risk by age ≥50 years as compared to the general population (SIR 50-59 years, 15-24 years at HL: 8.6 (5.1-13.4); SIR ≥60 years, 15-24 years at HL: 7.4 (1.5-21.7) SIR 50-59 years, 25-34 years at HL: 4.0 (2.4-6.3); SIR ≥60 years, 25-34 years at HL: 2.7 (0.7-6.9)).	Schaapveld 2015		
Overall conclusion			
Risk among survivors previously treated with chest radiation by age >50 years:	5 studies		
There is high quality evidence that female childhood, adolescent and young adult cancer survivors previously treated with (high-dose) chest	Level A		
radiation with an attained age of 50-60 years have an increased risk of breast cancer.			
There is low quality evidence that female childhood, adolescent and young adult cancer survivors previously treated with (high-dose) chest	2 studies		
radiation with an attained age of ≥60 years have an increased risk of breast cancer.	Level C		

Breast cancer risk in survivors aged >50 years			
Childhood cancer su	rvivors		
Ehrhardt 2019	Breast cancer risk after chest radiation by age 50 years	Cumulative incidence: 41%	
Holmqvist 2019	Breast cancer risk after chest radiation by age 50 years	Cumulative incidence: 23.5% (16.9-30.7)	
Moskowitz 2014	Breast cancer risk after chest radiation by age 50 years	Cumulative incidence childhood cancer survivors: 30% (25-34) Cumulative incidence Hodgkin lymphoma survivors: 35% (29-40) Cumulative incidence BRCA1 mutation carriers: 31% (15-48) Cumulative incidence BRCA2 mutation carriers: 10% (1-23)	

		Cumulative incidence continues to increase by age 55 years
Hodgkin lymphoma	survivors	
Swerdlow 2012	Breast cancer risk after chest	SIR 50-59 years: 3.8 (3.1-4.7)
	radiation by age ≥50 years	SIR ≥60 years: 2.7 (1.7-4.3)
Schaapveld 2015	Breast cancer risk by age ≥50 years	SIR 50-59 years, 15-24 years at HL diagnosis: 8.6 (5.1-13.4)
	in patients treated with and	SIR ≥60 years, 15-24 years at HL diagnosis: 7.4 (1.5-21.7)
	without chest radiation	SIR 50-59 years, 25-34 years at HL diagnosis: 4.0 (2.4-6.3)
		SIR ≥60 years, 25-34 years at HL diagnosis: 2.7 (0.7-6.9)

What breast cancer surveillance modality should be used?

10 What is the diagnostic value of a breast MRI and a mammogram compared to a breast MRI alone (additional value of mammogram) or mam	mogram alone		
(additional value of MRI) to detect breast cancer in an early stage in CAYA cancer survivors?			
11 What is the diagnostic value of a breast MRI and a mammogram compared to a breast MRI (additional value of a mammogram) to detect bro	east cancer in an		
early stage in women aged 25-35 years?			
Conclusion single studies			
In female childhood cancer survivors treated with chest radiation, the sensitivity of mammogram, MRI, and both to detect breast cancer was	Ehrhardt 2019		
53.8% (26.8% -80.9%), 69.2% (44.1%-94.3%) and 85.8% (72.4%-99.2%), respectively.			
In female childhood cancer survivors treated with chest radiation, the specificity of mammogram, MRI, and both to detect breast cancer was			
96.3% (94.1%-98.4%), 91.4% (88.1%-94.6%) and 99.7% (99.3%-100.0%), respectively.			
(Mean age at screening: 36.9 ± 7.8 yr)			
In female Hodgkin lymphoma survivors treated with chest radiation, the sensitivity of mammogram, MRI, and both to detect breast cancer was	Ng 2013		
68%, 67% and 94%, respectively.			
In female Hodgkin lymphoma survivors treated with chest radiation, the specificity of mammogram, MRI, and both to detect breast cancer was			
93%, 94% and 90%, respectively.			
(Median age at screening: 43 (range 22-65) yr)			
In female Hodgkin lymphoma survivors treated with chest radiation, the sensitivity of mammogram, MRI, and both to detect breast cancer was	Tieu 2014		
70.0%, 80.0% and 100%, respectively.			
In female Hodgkin lymphoma survivors treated with chest radiation, the specificity of mammogram, MRI, and both to detect breast cancer was			
95.0%, 93.5% and 88.6%, respectively.			
(Median age at screening: 30 (range 19-59) yr)			
In female young adult cancer survivors treated with chest radiation, the added cancer yield per patient of mammogram and MRI to detect breast	Freitas 2013		
cancer was 1 (0.2-5.6) and 4.1 (1.6-10) (<i>P</i> = 0.175), respectively.			
In female young adult cancer survivors treated with chest radiation, the sensitivity of mammogram and MRI to detect breast cancer was 69% (60-			
78%) and 100% (93-100%) (<i>P</i> = 0.375), respectively.			
In female young adult cancer survivors treated with chest radiation, the specificity of mammogram and MRI to detect breast cancer was 98% (93-			
99%) and 94% (87-97%) (<i>P</i> = 0.375), respectively.			
In female young adult cancer survivors treated with chest radiation, the positive predictive value (PPV) of mammogram and MRI to detect breast			
cancer was 82% (74-89%) and 71% (62-79%) (P = 0.945), respectively.			
In female young adult cancer survivors treated with chest radiation, the negative predictive value (NPV) of mammogram and MRI to detect breast			
cancer was 95% (89-98%) and 99% (94-99%) (<i>P</i> = 0.950), respectively.			
(Mean age at screening: 37 (range 19-65) yr)			
In female childhood cancer survivors treated with chest radiation, the sensitivity of mammogram and MRI to detect breast cancer was 73% (39-	Terenziani 2013		
94%) and 100% (93-100%), respectively.			
In female childhood cancer survivors treated with chest radiation, the specificity of mammogram and MRI to detect breast cancer was 99% (98-			
100%) and 80% (68-88%), respectively.			
(Median age at screening: 25 (range 14-45) yr)			

In female CAYA cancer survivors treated with chest radiation, the sensitivity of mammogram and MRI to detect breast cancer was 66.7% (29.9-	Sung 2011		
92.5%) and 66.7% (29.9-92.5%), respectively.			
In female CAYA cancer survivors treated with chest radiation, the specificity of mammogram and MRI to detect breast cancer was 93.2% (84.9-			
97.8%) and 81.7% (71.6-89.4%), respectively.			
In female CAYA cancer survivors treated with chest radiation, the positive predictive value (PPV) of mammogram and MRI to detect breast cancer			
was 54.5% (23.4-83.3%) and 28.6% (11.3-52.1%), respectively.			
In female CAYA cancer survivors treated with chest radiation, the negative predictive value (NPV) of mammogram and MRI to detect breast cancer			
was 95.8% (88.3-99.1%) and 95.7% (88.8-99.1%), respectively.			
In female CAYA cancer survivors treated with chest radiation, the accuracy of mammogram and MRI to detect breast cancer was 90.4% (81.9-			
95.8%) and 80.2% (70.6-87.8%) , respectively.			
(Median age at screening 40 (range 18-62) yr)			
In female Hodgkin lymphoma survivors treated with chest radiation, there were 34 true-positive findings , 23 false-positive findings and 1 false-	Horst 2016		
negative finding in 117 survivors with mammogram screening. In addition, there were no true-positive findings, 2 false-positive findings and 1			
false-negative finding and 39 survivors with MRI screening.			
In female Hodgkin lymphoma survivors treated with chest radiation, 58.3% of breast cancers were initially detected by mammogram screening.	Diller 2000		
In female Hodgkin lymphoma survivors treated with chest radiation, 75.0% of breast cancers were initially detected by mammogram screening.	Kwong 2008		
In female Hodgkin lymphoma survivors treated with chest radiation, 35.7% of breast cancers were initially detected by mammogram screening.	Howell 2009		
In female Hodgkin lymphoma survivors treated with chest radiation, 41.7% of breast cancers were initially detected by mammogram screening.	Lee 2008		
In female Hodgkin lymphoma survivors treated with chest radiation, 37.9% of breast cancers were initially detected by mammogram screening.	Dershaw 1992		
In female Hodgkin lymphoma survivors treated with chest radiation, 26.8% of breast cancers were initially detected by mammogram screening.	Wolden 2000		
Overall conclusion			
Diagnostic value breast MRI in CAYA cancer survivors:	6 studies		
There is moderate quality evidence that the diagnostic value of a breast MRI to detect breast cancer in CAYA cancer survivors is moderate (sensitivity	Level B		
ranged from 67% to 100%, specificity ranged from 80% to 94%).			
Diagnostic value mammogram in CAYA cancer survivors:	6 studies		
There is high quality evidence that the diagnostic value of a mammogram to detect breast cancer in CAYA cancer survivors is moderate (sensitivity	Level A		
ranged from 54% to 73%, specificity ranged from 93% to 99%).			
Diagnostic value breast MRI and mammogram compared to breast MRI or mammogram alone in CAYA cancer survivors:	3 studies		
There is moderate quality evidence that the diagnostic value of a breast MRI and mammogram is better than either test alone to detect breast	Level B		
cancer in CAYA cancer survivors (sensitivity ranged from 86% to 100%, specificity ranged from 89% to 99.7%).			
Mammography in Hodgkin lymphoma survivors:	6 studies		
There is moderate quality evidence that 26.8% to 75.0% of breast cancers in Hodgkin lymphoma survivors treated with chest radiation are initially			
detected by mammogram screening.			
Diagnostic value breast MRI and mammogram compared to breast MRI alone in women aged 25-35 years:	0 studies		
There are no studies that reported the diagnostic value of a breast MRI and a mammogram compared to a breast MRI to detect breast cancer in an			
early stage in women aged 25-35 years. Thus, it is unclear what the additional value is of a mammogram to a breast MRI (or visa versa) for younger			
women.			

Diagnostic value mammogram and breast MRI in CAYA cancer survivors							
		Sensitivity	Specificity	PPV	NPV	Accuracy	Added cancer yield
							per patient
Ehrhardt 2019	Mammogram	53.8% (26.8 -80.9%)	96.3% (94.1-98.4%)	-	-	-	-
Mean age at screening:	MRI	69.2% (44.1-94.3%)	91.4% (88.1-94.6%)	-	-	-	-
36.9 ± 7.8 yr	Both	85.8% (72.4-99.2%)	99.7% (99.3-100%)	-	-	-	-
<u>Ng 2013</u>	Mammogram	68%	93%	-	-	-	-
Median age at screening:	MRI	67%	94%	-	-	-	-
43 (range 22-65) yr	Both	94%	90%	-	-	-	-
<u>Tieu 2014</u>	Mammogram	70%	95.0%	-	-	-	-
Median age at screening:	MRI	80%	93.5%	-	-	-	-
30 (range 19-59) yr	Both	100%	88.6%	-	-	-	-
Freitas 2013	Mammogram	69% (60-78%)	98% (93-99%)	82% (74-89%)	95% (89-98%)	-	1 (0.2-5.6)
Mean age at screening:	MRI	100% (93-100%)	94% (87-97%)	71% (62-79%)	99% (94-99%)	-	4.1 (1.6-10)
37 (range 19-65) yr		, , ,	· ·	, γ	ζ γ		ι, ,
Terenziani 2013	Mammogram	73% (39-94%)	99% (98-100%)	-	-	-	-
Median age at screening:	MRI	100% (93-100%)	80% (68-88%)	-	-	-	-
25 (range 14-45) yr							
<u>Sung 2011</u>	Mammogram	66.7% (29.9-92.5%)	93.2% (84.9-97.8%)	54.5% (23.4-83.3%)	95.8% (88.3-99.1%)	90.4% (81.9-95.8%)	-
Median age at screening:	MRI	66.7% (29.9-92.5%)	81.7% (71.6-89.4%)	28.6% (11.3-52.1%)	95.7% (88.8-99.1%)	80.2% (70.6-87.8%)	-
40 (range 18-62) yr							

12 What is the diagnostic value of a mammogram, compared to a breast MRI, to detect breast cancer in an early stage in women in a young age group compared to an older age group?

Conclusion single studies Women with an inherited susceptibility to breast cancer Suggested decreased sensitivity of a mammogram and breast MRI in women with an inherited susceptibility to breast cancer aged <40 vr compared Krieae 2006 to women aged ≥50 yr (sensitivity mammogram: 33.3% vs. 55.6%; sensitivity MRI: 61.6% vs. 66.7%). Suggested decreased discriminating capacity of a breast MRI versus a mammogram in women with an inherited susceptibility to breast cancer aged <40 yr compared to women aged \geq 50 yr (AUC difference: 0.068 vs. 0.114). Suggested decreased sensitivity of a mammogram and breast MRI in women with an inherited susceptibility to breast cancer aged <50 yr compared Sardanelli 2008 to women aged \geq 50 yr (sensitivity mammogram: 45.5% vs. 53.6%; sensitivity MRI: 88.9% vs. 92.9%). No suggested difference in specificity of a mammogram and breast MRI in women with an inherited susceptibility to breast cancer aged <50 yr compared to women aged ≥50 yr (specificity mammogram: 98.7% vs. 99.5%; specificity MRI: 96.6% vs. 96.9%). **Overall conclusion** Diagnostic value mammogram compared to breast MRI in women in a young age group compared to an older age group: 2 studies There is moderate quality evidence that in women with an inherited susceptibility to breast cancer aged <40 yr or <50 yr there is a lower sensitivity Level B compared to women aged ≥50 yr. There is no difference in the discriminating capacity of a breast MRI versus a mammogram for women aged <40 yr and ≥ 50 yr.

13 What is the diagnostic value of a clinical breast exam to detect breast cancer in an early stage in women aged <25 years?

No studies reported on the diagnostic value of a clinical breast exam to detect breast cancer in an early stage in women aged <25 years.