Impaired spermatogenesis – Who needs surveillance?					
Lopez Andreu et al. Persistent altered spermatogenesis in long-term childhood cancer survivors. Pediatr Hematol Oncol 2000;17:21-30					
Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks	
Single-centre cohort study Treatment era not mentioned <u>Follow-up:</u> Mean 13.6 (3.9- 25.2) years after treatment	43 male CCS >16 years of age at follow-up Diagnoses: ALL (n=21), AML (n=1), NB (n=8), GNB (n=1), GN (n=2), Wilms' tumour (n=9), mesoblastic nephroma (n=1) <u>Age at diagnosis:</u> Range 0.0-9.4 years <u>Age at follow-up:</u> Mean 20.2 (16.1-30.6) years <u>Controls:</u> 15 healthy volunteers aged ≤30 years; 373 patients aged ≤30 years consulting for infertility	Cranial irradiation: 14 (32.6%); 18-46 Gy Spinal irradiation: 3 (7.0%); 20-24 Gy (also treated with cranial radiation) <u>Testicular irradiation:</u> 1 (2.3%); 30 Gy (also treated with cranial and spinal radiation) <u>Abdominal irradiation:</u> 2 (4.7%); 30 Gy <u>Cyclophosphamide:</u> 9 (20.9%); 1200-27,200 mg/m ²	Outcome definitions:- Moderate oligozoospermia: sperm cell density 10-19 x 10 ⁶ /mL- Severe oligozoospermia: sperm cell density <10 x 10 ⁶ /mL- Moderate asthenozoospermia: 20-39% progressive motility- Severe asthenozoospermia: <20% progressive motility	 90% of eligible survivors completed follow-up assessment. A forward-stepping logistic regression analysis was performed. In addition to cumulative cyclophosphamide dose, FSH level was included as an independent factor. Testicular volume was excluded from the model. Radiotherapy and follow- up duration were not included in the model. 1 survivor was on replacement therapy after 30 Gy testicular radiation and high-dose cyclophosphamide. 	

Univariable results cyclophosphamide: - 5/9 (55.6%) treated with cyclophosphamide azoospermic and 1/9 (11.1%) severe oligozoospermic - Cumulative cyclophosphamide dose negatively correlated with sperm count: r=-0.43 (p=0.004) - Cumulative cyclophosphamide dose negatively correlated with sperm motility: r=-0.45 (p=0.002)
Univariable results cranial radiotherapy: - No correlation with sperm count, sperm motility, testicular volume, FSH level

Abbreviations: ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; FSH, follicle-stimulating hormone; GNB, ganglioneuroblastoma; GN, ganglioneuroma; NB, neuroblastoma.

Human Reprod 2007	;22:3215-3222			motherapy during childhood.
Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Multi-centre	56 male survivors of	ABVD or EBVD:	Outcome definitions:	56 out of 100 (56%) eligible
cohort study	childhood Hodgkin	56 (100%)	- Oligozoospermia:	patients included in this study.
,	lymphoma	Adriamycin 25mg/m ² or	sperm cell density <20 x 10 ⁶ /mL	There were no differences in age
1974-1998	, r	epirubicin 30 mg/m ² , bleomycin	- Severe oligozoospermia:	disease characteristics and
	Age at diagnosis:	10 mg/m^2 , vinblastine 6 mg/m ² ,	sperm cell density <5 x 10 ⁶ /mL	treatment between the included
Follow-up:	Median 11.4 (3.7-15.9)	dacarbazine 250 mg/m ² (days 1	- Decreased inhibin B:	56 male survivors and the 44 not
Median 15.5 (5.6-	years	and 8)	<150 ng/L	included.
30.2) years after	,	,	- Increased FSH:	
treatment	Age at follow-up:	MOPP:	>7.0 U/L	Multiple linear regression
	Median 27.0 (17.7-42.6)	40 (71.4%) of whom		analyses were performed,
	years	14 (25.0%) 3-4 cycles	Sperm concentration (n=21 assessed):	including number of MOPP
	,	26 (46.4%) ≥6 cycles	- MOPP: 49.1 (28-63) x 10 ⁶ /mL (n=4)	cycles, age at diagnosis, number
		Mechlorethamine 6mg/m ² (days	- $MOPP^+$: 1.1 (0-72) x 10 ⁶ /mL (n=17)	of EBVD/ABVD cycles,
		1 and 8), vincristine 2 mg/m^2	p<0.05	radiotherapy (mantle or
		(days 1 and 8), prednisone 40	- MOPP ⁻ : 0/4 (0.0%) azoospermia or	mediastinal), puberty at
		$mg/m^2/day$ (days 1 – 14),	oligozoospermia (all 4 normospermia)	diagnosis, presence of B-
		procarbazine 100 mg/m ² /day	- MOPP ⁺ : 9/17 (52.9%) azoospermia; 1/17	symptoms and follow-up
		(days 1 – 14)	(5.9%) oligozoospermia; 3/17; (17.6%) severe oligozoospermia	duration.
		Involved field irradiation:		3 men reported 5 spontaneously
		7 (12.5%)	<u>Inhibin B (n=38 assessed):</u> - MOPP ⁻ : 144.0 (93.0-274.0) ng/L (n=12)	conceived pregnancies. 2 men treated without MOPP each
		Abdominal irradiation:	- MOPP ⁺ : 16.5 (0.0-173.0) ng/L (n=26)	fathered 1 child. 1 man treated
		0 (0.0%)	p<0.01	with 6 MOPP cycles fathered 1 child and reported 2 spontaneou
		Pelvic irradiation:	<u>FSH (n=56 assessed):</u>	abortions.
		0 (0.0%)	- MOPP ⁻ : 3.0 (1.7-6.0) U/L (n=16)	
			- MOPP ⁺ : 16.8 (1.3-51.0) U/L (n=40)	
			p<0.01	
			Risk factors for decreased sperm	

concentration in multivariable analysis:
- Number of MOPP cycles: beta -6.25
(p<0.05)
- Age at diagnosis: beta -6.18 (p<0.05)
- Number of EBVD/ABVD cycles,
radiotherapy (mantle or mediastinal),
puberty at diagnosis, presence of B-
symptoms and follow-up duration
(p>0.05) (no effect measures reported)
Risk factors for decreased inhibin B in
multivariable analysis:
- Number of MOPP cycles: beta -21.59
(p<0.05)
- Other factors not significant
Risk factors for increased FSH in
multivariable analysis:
- Age at diagnosis: beta 1.4 (p<0.05)
- Number of MOPP cycles: beta 2.57
(p<0.01) Other verichles pet significant
- Other variables not significant

Abbreviations: FSH, follicle-stimulating hormone.

	ogenesis – Who needs s			
		ure and semen parameters in adult surv	vivors of childhood cancer: a report from the	St Jude Lifetime Cohort Study.
Lancet Oncol 2014;1	5:1215-1223	1		
Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Single-centre cohort study	214 adult male survivors of childhood	Alkylating agent chemotherapy: 214/214 (100%)	<u>Outcome definitions:</u> - Oligospermia: sperm cell density >0 -	Of the 549 men eligible for the semen analysis project, 226 (41%)
-	cancer		<15 x 10 ⁶ /mL	participated in a SJLIFE on-
1970-2002	Diagnoses:	Cyclophosphamide: 195/214 (91.1%)	 Normospermia: sperm cell density ≥15 x 10⁶/mL 	campus assessment and agreed to semen analysis; 12 were
Follow-up:	ALL (n=70), AML (n=5),	Ifosfamide: 26/214 (12.1%)	10 / 112	unable to produce a semen
Median 21.0 (10.5-	NHL (n=53), HL (n=2),	<u>nosidinide:</u> 20/214 (12.176)	Spermatogenesis and CED:	specimen, resulting in 214
41.6) years since diagnosis	NB (n=26), osteosarcoma (n=32),	Procarbazine: 2/214 (0.9%)	- Azoospermia: 53 (24.7%); mean CED 10,830 mg/m ²	assessable participants.
0	other (n=26)	Chlormethine (mechlorethamine): 1/214 (0.5%)	- Oligospermia: 59 (27.6%); mean CED 8,480 mg/m ²	The multinomial logistic regression analysis included age
	Age at diagnosis:		- Normospermia: 102 (47.7%); mean CED	at diagnosis, age at assessment
	Median 7.7 (0.01-20.3)	<u>Chlorambucil:</u> 0/214 (0%)	6,626 mg/m ²	and CED.
	years	<u>Busulfan:</u> 3/214 (1.4%)	 Correlation CED and sperm concentration: r=-0.37 (p<0.0001) 	Unable to identify threshold dose
	Age at follow-up:	<u>Dusunum</u> 3/214 (1.476)		(substantial overlap). Impaired
	Median 29.0 (18.4-	Cyclophosphamide equivalent dose	Risk factors for azoospermia as compared	spermatogenesis unlikely when
	56.1) years	(CED): Median 7,400 (1,000-	to normospermia in multinomial logistic	CED <4000 mg/m ² .
		41,311) mg/m ²	regression analysis: - CED per 1,000 mg/m ² :	
		Cisplatin/carboplatin: 44/214	OR 1.22; 95% CI 1.11-1.34 (p<0.0001)	
		(20.6%)	- Age at diagnosis per years: OR 0.97; 95% CI 0.91-1.05 (p=0.45)	
		Dacarbazine: 3/214 (1.4%)	- Age at assessment per years: OR 0.99, 95% CI 0.94-1.05 (p=0.8)	
		Radiotherapy: 0/214 (0%)	0r 0.33, 33% CI 0.34-1.03 (µ-0.8)	
		, , , , , , , , , , , , , , , , ,	Risk factors for oligospermia as compared	
		Bilateral orchiectomy: 0/214 (0%)	to normospermia in multinomial logistic	
			regression analysis:	
			- CED per 1,000 mg/m ² :	

	OR 1.14; 95% CI 1.04-1.25 (p=0.006)
	- Age at diagnosis per years:
	OR 0.95; 95% CI 0.89-1.02 (p=0.13)
	- Age at assessment per years:
	OR 0.97, 95% CI 0.92-1.03 (p=0.28)

Abbreviations: ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; CED, cyclophosphamide equivalent dose; HL, Hodgkin lymphoma; NB, neuroblastoma; NHL, non-Hodgkin lymphoma; OR, odds ratio; 95% CI, 95% confidence interval.

Impaired spermatogenesis – Who needs surveillance?

Wilhelmsson et al. Adult testicular volume predicts spermatogenetic recovery after allogeneic HSCT in childhood and adolescence. Pediatr Blood Cancer 2014;61:1094-1100

Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Two-centre cohort	106 male CCS who	sTBI + cyclophosphamide: 30 (28%)	Outcome definition:	106 out of 123 (86.2%) eligible
study	received allogeneic		Azoospermia - no spermatozoa detected in	survivors participated in this
	HSCT >5 years after	<u>fTBI + cyclophosphamide:</u> 20 (19%)	any field of a double-chambered	study; 31 out of 106 (29.2%)
1978-2000	treatment and reached		haemacytometer before or after	semen analysis.
	puberty at follow-up	<u>fTBI + cyclophosphamide +</u>	centrifugation.	
Follow-up:		etoposide: 2 (2%)		Testicular volume measured
Mean 13 (4-28)	Diagnoses:		Spermatogenesis (n=31 assessed):	with orchidometer or ruler &
years since HSCT	ALL (n=44), AML (n=20),	<u>fTBI + cytarabine:</u> 16 (15%)	- Azoospermia: 21 (67.7%)	formula. If both testes
	SAA (n=17), other		- TBI: 20/24 (83.3%) azoospermia, 4/24	measured, mean of both used.
	(n=25)	<u>fTBI + melphalan:</u> 3 (3%)	(16.7%) non-azoospermia	Adult testicular volume (n=74)
	Analysed as:		 Cyclophosphamide-only: 0/3 (0%) 	documented by Tanner stage 5,
	Leukaemia (n=64)	<u>Busulfan:</u> 3 (3%)	azoospermia, 3/3 (100%) non-azoospermia	reached final height, or age >18
	SAA (n=17)		- Busulfan-based: 1/4 (25%) azoospermia,	years.
	Others (n=25)	Busulfan + cyclophosphamide: 15	3/4 (75%) non-azoospermia	
		(14%)	- Leukaemia: 17/19 (89.5%) azoospermia,	In the multivariable analysis the
	Age at diagnosis:		2/19 non-azoospermia (10.5%)	effect of TBI was evaluated.
	Mean 8.0 (1-17) years	Cyclophosphamide only: 12 (11%)		However, 5 patients treated in
			Predictors for active sperm production in	the no TBI group had received
	Age at follow-up:	Cyclophosphamide + total nodal	multivariable logistic regression analysis:	TNI, hence potentially exposing
	Mean 22 (12-42) years	irradiation (TNI): 5 (5%)	- No leukaemia diagnosis vs. leukaemia	the testes to radiotherapy (no
			diagnosis:	details were provided to
		CRT for leukaemia: 14 (22%)	OR 19.8; 95% CI 1.9-210.3 (p<0.01)	indicate if testicular shielding
			- Testicular volume ≥15 ml vs. <15 ml:	was used). In addition, the no
		Testicular irradiation for	OR 17.1; 95% CI 1.4-215.8 (p<0.03)	TBI group was also treated with
		leukaemia: 8 (12%)	- No TBI vs. TBI:	cyclophosphamide, busulfan, o
			p>0.05 (OR not mentioned)	both.
		Dose:	- FSH <10 IU vs. ≥10 IU:	
		Cyclophosphamide 120 mg/kg	p>0.05 (OR not mentioned)	Leukaemia was associated with
		(except SAA who had 200 mg/kg)		azoospermia. This might be due
		TBI 10-12 Gy	Predictors for active sperm production in	to CRT and/or testicular

TNI (in SAA) 6 Gy	bivariate logistic regression analysis:	irradiation. It is, however,
	 No leukaemia diagnosis vs. leukaemia 	unclear how many patients with
<u>Overall:</u>	diagnosis:	sperm samples were treated
TBI-based: 71 (67.0%)	OR 17.0; 95% CI 2.6-113.0 (p<0.003)	with CRT and/or testicular
Busulfan-based (no TBI or TNI): 18	- Testicular volume ≥15 ml vs. <15 ml:	irradiation.
(17.0%)	OR 14.2; 95% CI 2.1-98.1 (p<0.007)	
Cyclophosphamide only: 12 (11.3%)	- No TBI vs. TBI:	2 out of 106 fathered a child.
Cyclophosphamide + TNI (no TBI): 5	OR 30.0; 95% CI 2.8-322.1 (p<0.005)	
(4.7%)	- FSH <10 IU/L vs. ≥10 IU/L:	
	OR 0.8; 95% Cl 0.7-1.0 (p<0.047)	

Abbreviations: ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; CRT, cranial radiotherapy; FSH, follicle stimulating hormone; fTBI, fractionated TBI; HSCT, haematopoietic stem cell transplantation; OR, odds ratio; SAA, severe aplastic anaemia; sTBI, single fraction TBI; TBI, total body irradiation; TNI, total nodal irradiation; 95% CI, 95% confidence interval.

Testosterone deficiency – Who needs surveillance?

Mackie et al. Gonadal function following chemotherapy for childhood Hodgkin's disease. Med Pediatr Oncol 1996;27:74-78

	_			
Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
National multi-	58 postpubertal male	<u>ChIVPP:</u>	Outcome definitions:	101 out of 168 (60.1%) eligible male
centre trial cohort	survivors of childhood	58 (100%); 6-8 cycles	- Leydig cell dysfunction:	and female CCS included in this study.
study	Hodgkin disease treated	Chlorambucil 504-672	LH >10 IU/L	46 out of 58 (79.3%) males had
	according to UKCCSG HD	mg/m ² , vinblastine,	Testosterone <10 nmol/L	gonadotropin levels obtained.
Treatment era not	Trial 8201	prednisolone,	 Abnormal gonadotropin levels: 	
reported		procarbazine 8,400-	FSH >10 IU/L	Lower level of evidence – no control
	Age at diagnosis:	11,200 mg/m ²		group, relatively narrow range of
Follow-up:	Mean 12.2 (8.2-15.3)		<u>Leydig cell dysfunction (个 LH) (n=41 assessed):</u>	cumulative doses
Median 6 (2.5-	years	Radiotherapy below	10 increased (24.4%); range of these	
11.1) years from		diaphragm:	increased LHs, 10.3-18 IU/L	Note potential bias - LH and
diagnosis	Age at follow-up not	0 (0.0%)		testosterone only described clearly in
	reported		\downarrow testosterone levels (n=37 assessed):	survivors with increased FSH levels.
			5 decreased (13.5%); range of all	
			testosterones, 4.3-37.8 nmol/L	Note concerns about outcome definitions:
			↑ FSH levels (n=46 assessed):	• Leydig cell dysfunction based on high
			41 increased (89.1%); range of increased	LH rather than low testosterone
			FSHs, 10.8-40.7 IU/L	Cutoff of 10 may be too high
				High LH definition not appropriate
			Risk factors for Leydig cell dysfunction in	if patient received cranial RT (not
			multivariable regression analyses:	specified in this paper albeit
			- Amount of chemotherapy, NS	unlikely)
			- Age at treatment, NS	
			- Follow-up duration, NS	Azoospermia present in 7 survivors in
			(no effect measures reported)	whom semen analyses were
				performed. All progressed
			Risk factors for 个 FSH in multiple regression	spontaneously through puberty.
			analyses:	
			- Age or pubertal status at time of treatment,	Unclear how "amount of
			NS	chemotherapy" is defined.

(no effect measures reported)	Multiple regression performed for gonadotropins and Leydig cell dysfunction. However, methodology of testosterone analysis not clear.
-------------------------------	--

Abbreviations: FSH, follicle-stimulation hormone; LH, luteinising hormone; NS, not significant.

Testosterone deficiency – Who needs surveillance?

Tromp et al. Reproductive status in adult male long-term survivors of childhood cancer. Hum Reprod 2011;26:1775-1783

Study design Treatment era Years of follow-up	Participants	Treatment	Main outcomes	Additional remarks
Single-centre cohort study	565 male CSS who survived ≥5 years from diagnosis and were ≥18	Alkylating agents: 336 (59.5%)	Outcome definitions: -↓ testosterone levels: <11 nmol/L -↑ LH levels: >15 U/L	565 out of 796 (71.0%) eligible CCS included in this study. However, missing endocrine
1966-2003 <u>Follow-up:</u> Median 15 (5.0-	years at follow-up <u>Diagnoses:</u> Leukaemia (22.1%), brain	Pelvic/abdominal irradiation only: 51 (9.0%)	 <u>↓ testosterone levels (n=460 assessed):</u> 57 (12.4%) Mean 17.2 nmol/L, SD 5.5 for total group 	measurements were randomly distributed among different treatment groups (data not shown).
39.0) years from diagnosis	tumour (8.3%), lymphoma (27.3%), testicular tumour (21.9%), kidney tumour (11.3%), bone tumour (9.4%), soft tissue sarcoma (12.3%), neuroblastoma (3.3%), other (4.3%) <u>Age at diagnosis:</u> Median 7.8 (range 0- 17.8) years <u>Age at follow-up:</u> Median 21.0 (18.0-46.0) years	Cranial irradiation only: 120 (21.2%) Cranial + pelvic/abdominal irradiation: 4 (0.7%) Radiation to fields including testes: Not reported TBI: 11 (1.9%) Surgery testicular region: 38 (6.7%)	 ↑ LH levels (n=489 assessed): 14 (2.9%) Median 6.0 U/L, range 1.0-40.0 for total group Risk factors for lower (but not necessarily abnormal) testosterone: Model 1 – univariable linear regression analysis Adjusted for age at diagnosis and follow-up duration TBI yes vs. no: beta -3.53 (p=0.036) Model 2 – multivariable linear regression analysis (adjustment for all treatments) All treatment variables NS (procarbazine, cyclophosphamide, other alkylating agents (busulfan, carmustine, mechlorethamine, ifosfamide, lomustine, melphalan, temozolamide – not evaluated separately), cisplatin/carboplatin, antimetabolites, vinca alkaloids, antimetabolites, anthracyclines, other chemotherapeutic agents, cranial irradiation, pelvic/abdominal radiation, 	 exclude testosterone deficiency in this group – clinically, testosterone and LH need be assessed together, especially in patients who received cranial irradiation (in whom LH response may be blunted by central hypogonadism), but data not reported 3) Difficult to interpret clinical relevance of testosterone risk factor analyses since most of the testosterones were in the normal range
			other irradiation, TBI, surgery testicular	73 men reported that their

region)	partner had become pregnant:
	120 conceptions resulted in 103
	live births and 14 miscarriages. 56
	(77%) natural conception. No
	data presented to prove
	paternity in these pregnancies.

Abbreviations: LH, luteinising hormone; NS, not significant; OR, odds ratio; TBI, total body irradiation; 95% CI, 95% confidence interval.

Testosterone deficiency – Who needs surveillance?

Siimes et al. Prophylactic cranial irradiation increases the risk of testicular damage in adult males surviving ALL in childhood. Med Pediatr Oncol 1993;21:117-121

Study design				
Treatment era	Participants	Treatment	Main outcomes	Additional remarks
Years of follow-up				
Multi-centre	41 male childhood ALL	Cyclophosphamide:	Outcome definitions:	3 patients treated with CRT had
cohort study	survivors at least 1 year	23 (56.1%)	- \downarrow testosterone levels: threshold level not	been started on testosterone
	off chemotherapy		reported	supplementation from 4 to 9
1966-2003		Cytosine arabinoside:	- \uparrow LH levels: threshold level not reported	years earlier. Their mean
	Age at diagnosis:	9 (22.0%)		testosterone concentration was
Follow-up:	Median 7.5 (range 1-16)		Testosterone levels:	lower (9.8 U/L at 2 weeks after
Mean 15.2 (4.0-	years	Vincristine, prednisone, 6-	- Cranial radiotherapy: Mean 17.0 (±7.5)	the preceding testosterone
25.0) years from		mercaptopurine,	- No cranial radiotherapy: Mean 20.2 (±6.7)	injection) than that of the other
diagnosis	Age at follow-up:	methotrexate: 41 (100%)	p=0.242	patients at time of the study.
	Median 21.0 (18.0-27.0)			
	years	<u>Adriamycin:</u> 21 (51.2%)	LH levels:	A forward-stepping linear
			- Cranial radiotherapy: Mean 8.2 (±8.1)	regression analysis was used to
		Asparaginase: 33 (80.5%)	- No cranial radiotherapy: Mean 6.0 (±3.4)	identify factors independently
			p=0.456	associated with testosterone
		<u>CRT 20-24 Gy:</u> 17 (41.5%)		deficiency. 3 patients with
			Risk factors for lower (but not necessarily	testosterone supplementation
		Radiation to fields including	abnormal) testosterone in multivariable	excluded from analysis.
		<u>testes:</u> 0 (0%)	analysis:	
			- Chemotherapy NS	Note limitations in interpreting
		Both cyclophosphamide and	- Cranial radiotherapy NS	LH level in patients who have
		cranial radiotherapy: 12 (29%)	- Age at diagnosis NS	received cranial radiotherapy (LH
				response may be blunted by
				central hypogonadism.

Abbreviations: CRT, cranial radiotherapy; LH, luteinising hormone; NS, not significant.

Impaired spermatogenesis – What surveillance modality should be used?

Green et al. Lack of specificity of plasma concentrations of inhibin B and follicle-stimulating hormone for identification of azoospermic survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. J Clin Oncol 2013;31:1324-1328

Study design Treatment era Years of follow-up	Participants	Diagnostic tests	Main outcomes	Additional remarks
Single-centre	275 male CCS who received	Inhibin B, FSH and inhibin	Azoospermia	298 out of 485 (61.4%) eligible
cohort study	gonadotoxic treatment, were	B:FSH ratio	<u>Sensitivity</u>	survivors participated in this
	not receiving exogenous		- Inhibin B: 100%	study; 23 treated with ≥40 Gy
Treatment period	androgens, had received <40	Cut-off levels for	- FSH: 78.1%	hypothalamic/pituitary
not reported	Gy hypothalamic/pituitary	azoospermia:	- Inhibin B:FSH ratio: 75.3%	irradiation and/or tumour in
	irradiation and were ≥18 years	- Inhibin B ≤31 ng/L		hypothalamic/pituitary region
Follow-up:	of age at follow-up	- FSH >11.5 IU/L	Specificity	excluded.
≥10 years from		- Inhibin B:FSH ratio ≤2.52	- Inhibin B: 45.0%	
diagnosis	Age at diagnosis:	pg/mIU	- FSH: 74.1%	Inhibin B was measured in 238
	Range 0-21 years		- Inhibin B:FSH ratio: 74.5%	patients and FSH was measured
		ROC analysis determined		in 275 patients.
	Age at follow-up:	the optimal cut-off levels	Negative predictive value	
	Median 30.5 (19.7-59.1) years		- Inhibin B: 100%	Patient sample divided into a
			- FSH: 84.6%	learning set (n=140) and a
	<u>Gonadotoxic treatment:</u> 275 (100%);		- Inhibin B:FSH ratio: 83.5%	validation set (n=135) by random assignment: diagnostic values
	Alkylating agents, direct		Positive predictive value	were similar. Results are shown
	testicular irradiation or <40 Gy		- Inhibin B: 52.1%	for the combined data sets.
	hypothalamic/pituitary		- FSH: 65.1%	
	irradiation (≥40 Gy hypothalamic/pituitary		- Inhibin B:FSH ratio: 63.8%	
	irradiation specifically		Area under the BOC curve	
	excluded from analysis)		<u>Area under the ROC curve</u> - Inhibin B: 0.72	
	excluded from analysis)		- FSH: 0.83	
	Prevalence azoospermia: 105 (38.2%)		- Inhibin B:FSH ratio: 0.83	

Abbreviations: FSH, follicle-stimulating hormone; ROC, receiver operating characteristics.

Study design Treatment era Years of follow-up	Participants	Diagnostic tests	Main outcomes	Additional remarks
Single-centre	129 male CCS >18 years of age	Inhibin B, FSH and	Azoospermia	151 out of 397 (38.0%) eligible
cohort study	at follow-up	testicular volume	<u>Sensitivity</u> - Inhibin B: 91%	survivors participated in this study; 8 survivors on
1970-2002	Age at diagnosis:	Cut-off levels for	- FSH: 96%	testosterone replacement
	Median 10 (0.1-17) years	azoospermia:	- Testicular volume: 70%	therapy and 14 men who could
Follow-up:		- Inhibin B <50 ng/L		not ejaculate were excluded from
Median 19 (4-36)	Age at follow-up:	- FSH >10.9 IU/L	Specificity	the study.
years after	Median 29 (20-46) years	- Testicular volume <24 mL	- Inhibin B: 90%	
treatment			- FSH: 96%	
	<u>Treatment:</u>	ROC analysis determined	- Testicular volume: 93%	
	 Chemotherapy only: 35 	the optimal cut-off levels		
	(27.1%); carmustine,		Negative predictive value	
	lomustine, chlorambucil,		- Inhibin B: 98% (95% Cl 93-100%)	
	cisplatin,		- FSH: 99% (95% CI 94-100%)	
	cyclophosphamide,		- Testicular volume: 92% (95% Cl 84-96%)	
	melphalan, procarbazine			
	- Radiation involving testes: 1		Positive predictive value	
	(0.8%)		- Inhibin B: 66% (95% CI 47-81%)	
	- Other radiation: 13 (10.2%)		- FSH: 50% (95% CI 35-67%)	
	- Chemotherapy and radiation: 48 (37.2%)		- Testicular volume: 61% (95% Cl 39-80%)	
	- Brain surgery: 16 (12.4%)		Combining hormone values with testicular	
	- Other surgery: 16 (12.4%)		volume did not result in any increase in	
			positive or negative predictive value.	
	Prevalence azoospermia:			
	23 (17.8%)			

Abbreviations: FSH, follicle-stimulating hormone; 95% CI, 95% confidence interval

Impaired spermatogenesis – What surveillance modality should be used?

Rendtorff et al. Low inhibin B levels alone are not a reliable marker of dysfunctional spermatogenesis in childhood cancer survivors. Andrologia 2012;44:219-225

Study design Treatment era Years of follow-up	Participants	Diagnostic tests	Main outcomes	Additional remarks
Single-centre	73 male CCS >18 years of age	Inhibin B and FSH	Azoospermia	Unclear how many patients were
cohort study	at follow-up, of whom 42		Positive predictive value	eligible for the study; only stated
	underwent semen analysis	Cut-off levels for	- Inhibin B: 42.3%	that 77 patients returned the
1980 onwards		azoospermia:	- FSH: 61.5%	questionnaire and consent.
	Age at diagnosis:	- Inhibin B <80 pg/mL	- Inhibin B + FSH: 66.7%	
Follow-up:	Mean 10 (1-18) years	- FSH >10 IU/L		
Mean 13.6 (1-28)				
years since	Age at follow-up:			
diagnosis	Mean 24 (19-43) years			
	Treatment not reported			
	Prevalence azoospermia:			
	13 (31.0%)			

Abbreviations: FSH, follicle-stimulating hormone; ROC, receiver operating characteristics

Impaired spermat	Impaired spermatogenesis – What surveillance modality should be used?					
Lähteenmäki et al. Male reproductive health after childhood cancer. Acta Paediatr 2008;97:935-942						
Study design Treatment era Years of follow-up	Participants	Diagnostic tests	Main outcomes	Additional remarks		
Multi-centre cohort study Treatment period	25 male CCS, of whom 23 underwent semen analysis	Inhibin B, FSH and testicular volume Cut-off levels for low	Low sperm concentration (<20 x10 ⁶ /mL) <u>Area under the ROC curve</u> - Inhibin B: 0.83 (95% CI 0.67-0.99) - FSH: 0.73 (95% CI 0.49-0.96)	Unclear how many patients were eligible for the study.		
not reported	<u>Age at diagnosis:</u> Median 8.5 (0.9-15.9) years	sperm concentration (<20 x10 ⁶ /mL):	- FSH: 0.75 (95% CI 0.49-0.96) - Inhibin B + FSH: 0.78 (95% CI 0.56-0.99) - Testicular volume: 0.79 (95% CI 0.59-0.99)			
<u>Follow-up:</u> Median 14.5 (2.1- 26.1) years since diagnosis	Age at follow-up: Median 20.5 (15.6-31.2) years <u>Treatment:</u> - Cyclophosphamide: 11 (44.0%) - Cisplatin: 1 (4.0%) - MOPP: 1 (4.0%) - ABVD: 1 (4.0%) - CNS radiation: 8 (32.0%) - Testicular radiation: 1 (4.0%) - TBI: 1 (4.0%) - Abdominal radiation: 3	 Inhibin B: not reported FSH >10.5 IU/L Testicular volume: not reported 	Multiple regression analysis showed that inhibin B, testicular volume and FSH together explained 44% of the variance in sperm concentration (p=0.003)			
	 (12.0%) <u>Prevalence azoospermia:</u> 3 (13.0%) <u>Prevalence low sperm</u> <u>concentration (<20 x10⁶/mL):</u> 8 (34.8%) 					

Abbreviations: ABVD, doxorubicin, bleomycin, vinblastine, and dacarbazine; CNS, central nervous system; FSH, follicle-stimulating hormone; MOPP, nitrogen mustard, vincristine, prednisone, and procarbazine; ROC, receiver operating characteristics; TBI, total body irradiation; 95% CI, 95% confidence interval

Impaired spermatogenesis – What surveillance modality should be used?					
Jahnukainen et al. Semen quality and fertility in adult long-term survivors of childhood acute lymphoblastic leukaemia. Fertil Steril 2011;96:837-42					
Study design Treatment era Years of follow-up	Participants	Diagnostic tests	Main outcomes	Additional remarks	
Single-centre	51 male ALL survivors, of whom 47 underwent semen	Inhibin B, FSH and testicular size	Non-azoospermia	51 out of 77 (66.2%) eligible	
cohort study	analysis	testicular size	Sensitivity for predicting non-azoospermia - Inhibin B: 80%	survivors participated in this study.	
1970-1995	anarysis	Cut-off levels for non-	- FSH: 80%	study.	
Follow-up:	Age at diagnosis: Median 5 (1-15) years	azoospermia: - Inhibin B >122 ng/L	- Testicular size: 98%		
Median 20 (11-30)		- FSH <5 IU/L	Specificity for predicting non-azoospermia		
years after	Age at follow-up:	- Testicular size >17 mL	- Inhibin B: 100%		
treatment	Median 29 (26-38) years		- FSH: 80%		
		Cut-off levels for fertility:	- Testicular size: 100%		
	Treatment:	- Inhibin B >180 ng/L			
	- Cyclophosphamide: 26	- FSH <2.5 IU/L	Area under the ROC curve		
	(51.0%)	- Testicular size >23 mL	- Inhibin B: 0.74		
	- Other chemotherapy:		- FSH: 0.80		
	prednisolone, vincristine,		- Testicular size: 0.99		
	doxorubicin, asparaginase, methotrexate,		Fertility (fathering a child)		
	6-mercaptopurine		Sensitivity for identifying patients who		
	- Cranial radiation: 38 (74.5%)		fathered a child		
	- Testicular radiation: 18		- Inhibin B: 80%		
	(35.3%)		- FSH: 80%		
	- Spinal radiation: 1 (2.0%)		- Testicular size: 80%		
	Prevalence azoospermia:		Specificity for identifying patients who		
	17 (36.2%)		fathered a child		
			- Inhibin B: 60%		
			- FSH: 70%		
			- Testicular size: 70%		
			Area under the of ROC curve		
			- Inhibin B: 0.63		

	- FSH: 0.70	
	- Testicular size: 0.77	

Abbreviations: ALL, acute lymphoblastic leukaemia; FSH, follicle-stimulating hormone; ROC, receiver operating characteristics

Impaired spermatogenesis – What surveillance modality should be used?

Wilhelmsson et al. Adult testicular volume predicts spermatogenetic recovery after allogeneic HSCT in childhood and adolescence. Pediatr Blood Cancer 2014;61:1094-1100

Study design				
Treatment era	Participants	Diagnostic tests	Main outcomes	Additional remarks
Years of follow-up				
Two-centre cohort	106 male CCS who received	FSH and testicular volume	Non-azoospermia	106 out of 123 (86.2%) eligible
study	allogeneic HSCT >5 years after		Sensitivity for predicting non-	survivors participated in this
	treatment and reached puberty at	Cut-off level for non-	<u>azoospermia</u>	study; 31 out of 106 (29.2%)
1978-2000	follow-up; 31 semen analysis	azoospermia:	- FSH: 56%	semen analysis.
		- FSH <10 IU/mL	- Testicular volume: 80%	
Follow-up:	Age at diagnosis:	- Testicular volume ≥15 mL		
Mean 13 (4-28)	Mean 8.0 (1-17) years		Specificity for predicting non-	
years		ROC analysis determined	<u>azoospermia</u>	
	Age at follow-up:	the optimal cut-off levels	- FSH: 81%	
	Mean 22 (12-42) years		- Testicular volume: 91%	
	Gonadotoxic treatment:		Area under the ROC curve	
	sTBI + cyclophosphamide: 30 (28%)		- FSH: 0.79	
	fTBI + cyclophosphamide: 20 (19%)		- Testicular volume: 0.89	
	fTBI + cyclophosphamide +			
	etoposide: 2 (2%)			
	fTBI + cytarabine: 16 (15%)			
	fTBI + melphalan: 3 (3%)			
	Busulfan: 3 (3%)			
	Busulfan + cyclophosphamide: 15			
	(14%)			
	Cyclophosphamide only: 12 (11%)			
	Cyclophosphamide + TNI: 5 (5%)			
	Prevalence azoospermia:			
	21/31 (68%)			

Abbreviations: FSH, follicle-stimulating hormone; fTBI, fractionated TBI; ROC, receiver operating characteristics; sTBI, single fraction TBI; TBI, total body irradiation; TNI, total nodal irradiation